Phage Therapy Against Biofilm of Multidrug-Resistant Klebsiella Pneumoniae Isolated from Zakho Hospital Samples

Authors

  • Yousif Abdullah AlBany Department of Nursing, Bardarash Technical Institute, Duhok Polytechnic University, Duhok, Kurdistan Region - F.R. Iraq
  • Mohammad Ismail Al-Berfkani Department of Medical Laboratory Technology, Zakho Technical Institute, Duhok Polytechnic University, Duhok, Kurdistan Region - F.R. Iraq
  • Mahde Saleh Assaf Department of Biology, College of Science, Duhok University, Duhok, Kurdistan Region - F.R. Iraq

DOI:

https://doi.org/10.25156/ptj.v9n1y2019.pp17-22

Keywords:

Bacteriophage, Biofilm, Klebsiella pneumoniae, Multidrug resistant

Abstract

Klebsiella pneumoniae causes infection in human, especially in immunocompromised patients. About 80% of nosocomial infection caused by K. pneumoniae is due to multidrug-resistant strain. The emergence of antibiotic-resistant bacterial strains necessitates the exploration of alternative antibacterial therapies, which led to studying the ability of viruses that infect the bacteria (known as bacteriophage) to treat infection with K. pneumoniae. Bacterial biofilm which are crucial in the pathogenesis of much clinically important infection and are difficult to eradicate because they exist resistant to many antimicrobial treatment. Biofilm formation by K. pneumoniae is responsible for the catheter associated infection such as urinary tract infection and respiratory tract infection due to the colonization of the polymeric surface by forming multilayered cell cluster embedded in extracellular materials. In this study K. pneumoniae isolated from the hospital environment and characterized it and form the biofilm of that organism by microplate quantitative assay. Similarly bacteriophage specific for K. pneumoniae isolated from river water. The aim of work is the use of bacteriophage as a possible alternative for the treatment of bacterial infection of K. pneumoniae. We showed that biofilm is reduced by isolated phages by the comparative account of colony-forming unit versus plaque-forming unit. The result of this study, therefore, suggests that the timing of starting the phage therapy after initiation of infection significantly contributes toward the success of the treatment.

Downloads

Download data is not yet available.

References

Al-Berfkani, M. I., A. A. Muslim, A. M. Sherzad. 2016. The effect of climate temperature and daily water intake on the diversity of uropathogens causing urinary tract infections in adult hospital
patients. Diyala J. Med. 11(1): 62-69.

Atterbury, R., P. L. Connerton, C. E. Dodd, C. E. Rees, and I. F. Connerton. 2003. Application of host-specific bacteriophages to the surface of chicken skin leads to a reduction in recovery of
Campylobacter jejuni. Appl. Environ. Microbiol. 69: 6302-6306.

Bedi, M. S., V. Verma and S. Chhibber. 2009. Amoxicillin and specific bacteriophage can be used together for eradication of biofilm Klebsiella pneumoniae b5055. World J. Microbiol. Biotechnol.25(7): 1145-1151.

Biswas, B., S. Adhya, P. Washart, B. Paul, A. Trostel, B. Powell, R. Carlton and C. R. Merril. 2002. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant
Enterococcus faecium. Infect. Immun. 70(1): 204-210.

Ceyssens, P. J. and R. Lavigne. 2010. Bacteriophages of Pseudomonas. Future Microbiol. 5(7): 1041-1055.

Costeron, J. W., P. S. Stewart and E. Greenberg. 1999. Bacterial biofilms: A common cause of persistent infections. Science. 284(5418): 1318-1322.

Curtin, J. J. and R. M. Donlan. 2006. Using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis, antimicrobial. Agents Chemother. 50: 1268-1275.

Donlan, R. M. 2002. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis. 8(9): 881-890.

Donlan, R. M. and J. W. Costerton. 2002. Biofims: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15(2): 167-193.

Fox, J. 2000. Phage treatments yield healthier tomato, pepper plants. ASM News. 66(8): 455-456.

Godkar, P. G. D. 2003. Medical Laboratory Technology. 2nd ed. Bhalani Published House, Mumbai. Hancockm, A. 1959. Bacteriophages. Interscience, New York.

Jagnow, J. and S. Clegg. 2003. Klebsiella pneumoniae mrkdmediated biofilm formation on extracellular matrix and collagencoated surfaces. Microbiology. 149(9): 2397-2405.

Lewis, K. 2001. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45(4): 999-1007.

Lin, G. G. and J. G. Scott. 2012. Role of biofilm in catheter associated urinary tract infection. Am. J. Infect. Control. 100(2): 130-134.

Lu, T. K. and J. J. Collins. 2007. Dispersing Biofilms with Engineered Enzymatic Bacteriophage. Vol. 104. Proceedings of the National Academy of Scieces of the United States of American.
pp11197-11202.

Riley, P. A. 2006. Phages: Their role in bacterial pathogenesis and biotechnology. J. Clin. Pathol. 59(9): 1003-1004.

Morita, M., Y. Tanji, K. Mizoguchi, T. Akitsu, N. Kijima and H. Unno. 2002. Characteriztion of a virulent bacteriophage specific for Escherichia coli o157: H7 and analysis of its cellular receptor
and two tail fiber genes. FEMS Microbiol. Lett. 211: 77-83.

Otman, J., M. E. Perugini, M. C. B. Tognim and M. C. Vidotto. 2007. Atypical phenotypic characteristics of Klebsiella pneumoniae isolates from an outbreak in a neonatal intensive care unit in
Brazil. Braz. J. Microbiol. 38(2): 273-277.

Parsek, M. R. and P. K. Singh. 2003. Bacterial biofilms: An emerging link to disease pathogenesis. Annu. Rev. Microbiol. 57: 677-701.

Russell, A. D., U. Tattawasart, J. Y. Maillard and J. R. Friday. 1988. Possible link between bacterial resistance and use of antibiotics. Antimicrob. Agents Chemother. 42: 2151-2152.

Sanchez, G. V., R. N. Master, R. B. Clark, M. Fyyaz, P. Duvvuri, G. Ekta and J. Bordon. 2013. Klebsiella pneumoniae antimicrobial drug resistance, United States, 1998-2010. Emerg. Infect. Dis.
19(1): 133-136.

Sillankorva, S., R. Oliveira, M. J. Vieira, I. Sutherland and J. Azeredo. 2004. Pseudomonas fluorescens infection by bacteriophage ?s1: The influence of temperature, host growth phase and
media. FEMS Microbiol. Lett. 241(1): 13-20.

Stahlhut, S. G., C. Struve, K. A. Krogfelt and A. Reisner. 2012. Biofilm formation of Klebsiella pneumoniae on urethal catheters requires either Type 1 or Type 3 fimbriae. FEMS Immunol. Med.
Microbiol. 65: 350-359

Published

2019-06-13

How to Cite

AlBany, Y. A. ., Al-Berfkani, . M. I. ., & Assaf, M. S. . (2019). Phage Therapy Against Biofilm of Multidrug-Resistant Klebsiella Pneumoniae Isolated from Zakho Hospital Samples. Polytechnic Journal, 9(1), 17-22. https://doi.org/10.25156/ptj.v9n1y2019.pp17-22

Issue

Section

Research Articles