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Abstract— This study aims to fitting two models where allow 

the response variable to be the length of time (months) to data of 

patients with stomach cancer; cox proportional model and 

Poisson regression model, for modeling and identifying the 

affecting factors of stomach cancer patients. The 

study was conducted between January 1, 2016 until December 31, 

2020 for all patients with stomach cancer at Nanakali Main 

Hospital for Cancer in the Kurdistan Region of Iraq - Erbil.   

The results indicated that, the models have not reached to the 

same variables that have an impact on our data of patients with 

stomach cancer data in Erbil city. Moreover, according to the 

results the Poisson regression fitted data set very well depending 

on the Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) values, the best model will be 

identified by the ones with smaller values. The data analyses of 

stomach cancer are done by using statistical programs (Mat-lab 

V.14 , SPSS V. 25 and STATGRAPHICS V. 19). 

Keywords— Survival Analysis, cox proportional model, 

Poisson regression model, Akaike Information Criterion (AIC), 

stomach cancer. 

I. INTRODUCTION 

Survival analysis is the process of analyzing data based on 

time-to-event (survival times). The time to event data shows 

the period of time between a well-defined time origin and a 

well-defined end point of interest (event). Although time-to-

event analysis and time-to-event data are often used more 

frequently than survival analysis and survival data, the term 

"Time to event" is clearer and more accurate. It's important to 

clearly identify the time origin and end point. As an 

illustration, in a study of a specific type of cancer, the 

diagnosis of that type of cancer is chosen as the time origin, 

and the death caused on by that specific cancer is chosen as 

the time end point. Or a research might examine people from 

the time of their birth (time of origin) until the appearance of a 

disease (end point). The data on the time to occurrence is 

typically collected sequentially over time, such as when data 

was collected for a clinical experiment or a proposed cohort 

study. Retrospective data collection methods include speaking 

with patients who have the disease in question or obtaining 

access to their medical records.(ISRA, 2019) 

1. Background Information 

in this section Stomach cancer which is the first important 

health issue discussed. Two functions, the survival function 

and the hazard rate also known as the hazard function, are 

used to describe the stomach cancer data. The survival 

function measures the possibility that a patient will survive to 

time t while the hazard rate (function), measures the 

possibility that the patient will die in the future instant of time. 

Moreover, exploration, description and the basic principles of 

two models (Cox regression models and Poisson regression 

models) given and the Log rank test to compares survival of 

two different groups of individuals.  Also, to select the best 

model between two models (Cox and Poisson regression 

model) Akaike’s Information Criterion and Bayesian 

information criterion were used. 

2.1 Cancer 

Cancer is a chronic disease that begins in the cells that are 

body's building blocks. Human body functions in a way that 

when old cells die, new cells are formed to replace the old 

ones. However, there are conditions where there is a mutation 

and the process goes wrong and cell formation does not take 

place in a normal way. It may happen like new cells start 

forming even without their need in the human body, that can 

be malignant or benign. If we discuss the benign tumors, they 

are not considered as cancer, whereas the malignant tumors 

are definitely very risky as they are base of cancer disease. 

Cells that are present in the malignant tumors have the 

possibility of being shifted to other parts of the human body 

causing serious risk to health condition which is known as 

metastasis. (AHMAD, 2019) 

2.1.2 Stomach cancer 

Stomach cancer is portrayed by a development of cancerous 

cells inside the lining of the stomach. Likewise called gastric 

cancer, this sort of cancer is hard to analyze in light of the fact 

that many people ordinarily do not show signs and symptoms 

in the early stages. While compared to other types of cancer, 

stomach cancer is often uncommon, one of the biggest risks of 

this disease is the difficulty in diagnosing it. Since stomach 

cancer typically doesn't have any early symptoms, it 
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frequently goes undetected until it has spread to other parts of 

the body, this makes it very hard to cure. 

2.1.3 Development of stomach cancer 

Usually stomach cancers grow slowly over many years. Pre 

- cancerous alterations frequently appear in the mucosa of the 

stomach before a real cancer develops. Since these early 

changes rarely have symptoms, they may go unnoticed. 

Cancer cells must undergo a number of modifications before 

they may move to new areas of the body. In order to adhere to 

the exterior wall of a lymph conduit or blood vessel, they first 

need to develop the ability to separate from the primary tumor. 

Cancerous cells can spread throughout the bloodstream and 

end up in distant organs. Cancer cells could end up in lymph 

nodes if they move through the lymphatic system. The 

majority of the cancer cells that escape either die or are 

eliminated before they may begin to grow somewhere. 

However, a few could move, start to spread, and develop new 

tumors. Metastasis is the medical term for the spread of cancer 

to a new area of the body. (AMERICAN CANCER SOCITY, 

2022) 

2.2 Survival Analysis  

The two fundamental parts of a survival analysis are the 

event time and the event status, both of which contain 

information on the occurrence of the relevant event. The 

survival and hazard functions, which both depend on time, can 

be fitted into two categories using event time. For the survival 

analysis to characterize the distribution for event times, these 

two functions are essential notions. The survival function 

provides the probability of surviving up to each individual 

time point. The probability that the event will happen, per unit 

of time, is provided by the hazard function. (AMERI, 2015) 

The majority of medical researches focus on the event of 

time to death. However, another crucial factor in cancer is the 

amount of time that passes between a treatment response and 

a recurrence or period of disease-free time. Additionally, it's 

vital to indicate the situation and duration of the observation, 

such as the period between a cancer diagnosis of confirmed 

response and the first relapse. The time to event data may 

include information on patient characteristics related to 

response, survival, and disease development, as well as 

information on survival time and treatment response. (ISRA, 

2019) 

Let T represent an individual's survival time with 

probability distribution function f and the cumulative 

distribution function 𝐹(𝑥) =∫ 𝑓(𝑢)𝑑𝑢
𝑥

0
  

The survival function, S(t), gives the probability that a 

subject will survive until time t: (AMERI, 2015) 

S(t)  = 𝑆(𝑡) = 𝑝𝑟(𝑇 ≥ 𝑡) = 1 − 𝐹(𝑡) = ∫ f(x)dx                          
…. (2.1) 

In contrast, we can express the probability distribution 

function as: 

𝑓(𝑡) =
𝜕𝐹(𝑡)

𝑑𝑡
= −

𝜕𝑆(𝑡)

𝑑𝑡
                                             …. (2.2) 

The hazard function serves as the foundation of a survival 

analysis for a number of reasons. It first tells us whether and, 

if so, when events occur, which is exactly what we want to 

know. The risk of the event occurring in each time period is 

summarized by its magnitude. second the hazard function 

includes both censored and uncensored situations. Third, no 

data is ignored or pooled; the sample hazard probabilities are 

calculated during the entirety of an event's occurrence. Fourth, 

In time periods where censoring prevents its direct 

computation, the sample hazard function can be utilized to 

estimate the sample survivor functions indirectly. 

suppose the survival time T is such that t ≤ T, t + 𝛿𝑡, then 

this probability can be expressed as: 

P (t ≤T < t+ 𝛿𝑡|T≥ t) 

By dividing by the interval length 𝛿𝑡 and by evaluating the 

limit of this conditional probability at 𝛿𝑡 approaches zero, we 

obtain a rate which defines the hazard 

function. 

That is, the Hazard is given by: 

 

𝒉(𝒕) = 𝐥𝐢𝐦
∆𝒕→𝟎

[
𝒑𝒓(𝒕 ≤ 𝑻 ≤ 𝒕 + ∆𝒕|𝑻 ≥ 𝒕)

∆𝒕
] 

𝒉(𝒕) = 𝐥𝐢𝐦[
∆𝒕→𝟎

[𝑭(𝒕 + ∆𝒕) − 𝑭(𝒕)]|∆𝒕)

𝑺(𝒕)
] 

𝒉(𝒕) =
𝝏𝑭(𝒕)|𝝏𝒕

𝒔(𝒕)
 

𝒉(𝒕)= 
𝒇(𝒕)

𝒔(𝒕)
   .                                                                                 

…. (2.3) 

The Hazard function is also known as conditional failure 

rate. The failure Hazard per unit time throughout the operation 

is provided by the Hazard function, which is fundamental to 

the data. However, in practice, the hazard function is the 

proportion of patients who die per unit of time when there is 

no controlled observation, even when they have survived to 

the starting point of the period.: (HOUT, 2017) 

               h(t) =
number of patients dying per unit time of the interval

number of patients surviving at t
       …. (2.4) 

2.3 Censoring  

In survival analysis, If the occurrence of interest hasn't been 

observed for a certain person, their survival time is 

called censored. This might be as a consequence of the fact 

that the survival data is analyzed since some people remain 

alive. It could also be due to the fact that some individuals 

have voluntarily left the experimental or clinical trial without 

notice. A survival time could also be considered as censored if 

event of interest death for example was due to a cause that is 

known to be unrelated to the treatment. Suppose an individual 

has been recruited into an experimental study at an initial time 

𝑡0 dies at time 𝑡0 +t with t unknown due to the fact that the 

individual is still alive or due to not following-up. If the 

individual was last known to be alive at time 𝑡0 + c, c > 0, then 

the time c is called a censored survival time. 

 

2.4 Cox proportional hazard model 

An example of an event history model is the Cox 

proportional hazard model. It regards time as continuous and 

makes no assumptions regarding the hazard function's shape. 

Due to the semiparametric Cox proportional hazard model's 

rising popularity, it's essential to develop practical methods for 
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determining whether the model is properly described. 

(KLEINBUM & KLEIN, 2012) provided a graphical 

procedure, a goodness-of-fit testing strategy, and a procedure 

involving the use of time-dependent variables as three 

methods for assessing the proportional hazard (PH) 

assumption of the Cox model. Numerous articles had 

discussed the proportional hazard model's graphical and 

goodness-of-fit methods. (ALJAS, 1988), (MOREAU, et al., 

1985) (PARZEN & LIPSITZ, 1999), (WEI, 1984) . 

Cox proportional hazard model assumes that the effects of 

covariates remain constant over time. The discrete-time 

survival model is more flexible than the Cox proportional 

hazard model in that it can take into account the effects of 

covariates that change over time. The Cox proportional hazard 

model is used frequently in a wide range of fields, yet it has 

some major limitations. The fundamental presumption that the 

interaction is cancelled when time is not included in the 

equation is the most important. declaring that time is essential 

for time-varying predictors and that time should be taken into 

account in the model. (SINGER & WILLETT , 1991) 

Therefore, the Cox proportional hazard model's survival 

probability function can be written as follows: 

S(t|x) = So(t) exp (βx).                                       …. (2.5) 

Or  

S(t|x) = So(t) exp (∑ BiXi
p
i=1   ).                         …. (2.6) 

When; 

𝑠0(𝑡) = ⅇ̅
∫ ℎ0(𝑥) 𝑑𝑥

𝑡
0 .                                         …. (2.7) 

The hazard ratio (HR) is constant over time about any two 

sets of variables,𝑥 and 𝑥∗ 

ℎ(𝑡|𝑥∗)

ℎ(𝑡|𝑥)
=

ℎ0(𝑡) 𝑒𝑥𝑝(∑ 𝛽𝑘
𝑝
𝑘=1 𝑥∗)

ℎ0(𝑡) 𝑒𝑥𝑝(∑ 𝛽𝑘
𝑝
𝑘=1 𝑥)

= ⅇ𝑥𝑝 (∑ 𝛽𝑘
𝑝
𝑘=1 (𝑥∗_ 𝑥)…. (2.8) 

Let h(t|xt) denote the hazard rate at time for an individual 

have covariate value xt 

h(t|xt) = h0(t) ∗ exp (β′x)                                … (2-9) 

Here xt = (x1t , x2t , … , xkt) , β = (β1 , β2 , …  , βk) 

k : is the total number of the covariates. 

βk : Is the treatment's consistent proportional effect. 

h0 (t) The baseline hazard function, represents an 

individual's hazard when all independent variable values are 

equivalent to zero.  (SCHMIDT & WITTE, 1998) 

As indicated by Hosmer and Lemeshow (1999); in Cox 

regression the measure that is analogous to R2 in multiple 

regression is: 

Rp
2 = 1 − exp [

2

n
(L0 − Lp]                                  … (2-10) 

Where:  

L0 : is the log likelihood of the model with no covariates. 

Lp : is the log likelihood of the model that includes the 

covariates. 

n : is the number of observations (censored or not). 

Where Lp denotes the log partial likelihood for a fitted 

model with p covariates, and L0 represents the log partial 

likelihood of model zero, a model without any covariates. The 

partial likelihood ratio test, denoted by the letter G, is 

calculated as two times the difference between the log partial 

likelihood of the model with the covariate and the log partial 

likelihood for the model without the covariate. 

G = 2[ Lp(𝛽̂) - Lp(0)]                                    …. (2.11) 

Where Lp(0) = − ∑ 𝑙𝑛 (𝑛𝑖)
𝑚
𝑖=1  and the term 𝑛𝑖 represents the 

number of individuals in the risk group at the observational 

survival time 𝑡𝑖.  

The statistic will follow a Chi-square distribution with p 

degrees of freedom under the null hypothesis that its 

coefficient is equivalent to zero. 

2.4.1 The assumption of proportional hazards 

 Here, some key assumptions can be made. 

l. First of those assumptions is that the proportional hazard, 

in a given study, needs to be fixed from one patient to another. 

2. The second assumption is that there needs to be a linear 

relationship between the natural log of the hazard function and 

the explanatory variables. Along with these two assumptions. 

3. The third assumption is that the explanatory variable, in 

any case, does not need to depend on time. 

4, Another key assumption that can be made is that 

statistical distributions should not be distributed by any 

response variable involved in the study. 

5. Finally, another assumption is that the rate of hazard 

needs to increase in a linear pattern with time. (COLLECT, 

2003) 

2.4.2 Estimating the coefficients in the Cox PH model 

The baseline hazard function ℎ0 (t) and the regression 

coefficients 𝛽1,..., m are the unknowns of the Cox model. An 

alternative formula for the proportional hazards model. It 

avoids the knowledge of the functional form of ℎ0(t). The 

most commonly used method for estimation of the regression 

coefficients is the partial - likelihood estimation method. With 

this approach, the time-dependent factor of a likelihood 

function is omitted, and the remaining elements maximized, 

known as the partial - likelihood function, to produce the 

maximum partial - likelihood estimates of the regression 

coefficients (𝛽1,... , 𝛽𝑚). 

Probability of (individual i dies at t(j) given one death from 

the risk set R(t(j)) at time t(j)) 

=  
𝑃(individual i dies at 𝑡(𝑗))

𝑃(one death at 𝑡(𝑗))
 

=  
𝑃(individual i dies at 𝑡(𝑗))

∑ P(individual k dies at 𝑡(𝑗))𝑘∈𝑅(𝑡(𝑗))

 

where R (𝑡𝑗) denotes the set of all subjects who are at risk at 

time 𝑡𝑗. Replacing the probability of death at time 𝑡𝑗, with the 

probability of death in the interval [ 𝑡𝑗,  𝑡𝑗+ ∆) and passing to 

the limit as ∆ → 0, yields the following expressions: 

(KOROSTELEVA, n.d.) 

≅

𝑃(individual i dies at 𝑡(𝑗), 𝑡(𝑗) + ∆𝑡)
∆𝑡

∑ P(individual k dies at 𝑡(𝑗)𝑘∈𝑅(𝑡(𝑗))
, 𝑡(𝑗) + ∆𝑡)/∆𝑡

 

=
ℎ0(𝑡𝑗) exp (𝐵′𝑥𝑖𝑡𝑗)

∑ ℎ0(𝑡𝑗) exp (𝐵′𝑥𝑘𝑡𝑗)𝑘∈𝑅(𝑡𝑗)

 

=
 exp (𝐵′𝑥𝑖𝑡𝑗)

∑  exp (𝐵′𝑥𝑘𝑡𝑗)
𝑘∈𝑅(𝑡𝑗)

.                                        …. (2.12) 
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Where k : represent the number of distinct observed event 

times, xi(t(j)) : is a x covariate vector values of individual i that 

dies at time t(j) and Ri has been the risk set that contains 

individuals for whom observation event or censoring time is 

higher than or equal to Ti (LOKESHMARAN A, 2013) ( ،فتيحة

2015). 

When applied to the Cox PH model, the partial likelihood 

function is as follows: 

𝐿(β) = ∏ 𝐿𝑖

𝑘

𝑖=1

= ∏
 exp (β′𝑥𝑖𝑡𝑗)

∑  exp (β′𝑥𝑘𝑡𝑗)
𝑘∈𝑅(𝑡(𝑗))

𝑘

𝑖=1

 

𝐿(β) = ∏
exp(β1xi1+β2xi2+⋯+βkxik)

∑ 𝑒(β1xi1+β2xi2+⋯+βkxik)𝑘
𝑖=1

𝑘
𝑖=1                    

𝑙(β) = log (𝐿(𝐵))=log [∏
 exp (β′𝑥𝑖𝑡𝑗)

∑  exp (β′𝑥𝑘𝑡𝑗)
𝑘∈𝑅(𝑡(𝑗))

𝑘
𝑖=1 ] 

𝑙(β) = ∑ [𝑘
𝑖=1  β′𝑥𝑖 −log {∑ ⅇ𝑥𝑝𝑘∈𝑅  β′𝑥𝑖} 

𝑈(β) =
𝜕

𝜕𝛽
 𝑙(β) =  𝑥𝑖 − 

∑ 𝑥𝑖ⅇ𝑥𝑝𝑘∈𝑅 β′𝑥𝑖

∑ ⅇ𝑥𝑝𝑘∈𝑅 β′𝑥𝑖

 

β′ =  𝑥𝑖 − 
∑ 𝑥𝑖𝑒𝑥𝑝𝑘∈𝑅 β′𝑥𝑖

∑ 𝑒𝑥𝑝𝑘∈𝑅 β′𝑥𝑖
  

𝐼(β) = −[
𝜕

𝜕𝛽
 (𝑈(β))] = −  

𝜕

𝜕𝛽
[ 𝑥𝑖 − 

∑ 𝑥𝑖𝑒𝑥𝑝𝑘∈𝑅 β′𝑥𝑖

∑ 𝑒𝑥𝑝𝑘∈𝑅 β′𝑥𝑖
 ] 

𝐼(β) = −[
∑ 𝑥𝑖𝑥𝑖′𝑒𝑥𝑝𝑘∈𝑅 β′𝑥𝑖

∑ 𝑒𝑥𝑝𝑘∈𝑅 β′𝑥𝑖
 − 

[∑ 𝑥𝑖𝑒𝑥𝑝𝑘∈𝑅 β′𝑥𝑖] [∑ 𝑥𝑖′𝑒𝑥𝑝β′𝑥𝑖]𝑘∈𝑅

(∑ 𝑒𝑥𝑝𝑘∈𝑅 β′𝑥𝑖)2                        

…. (2.13) 

  
And then the maximum partial likelihood estimators. 

Asymptotically have: 

β̂ ~ N(𝐵0,  𝐼−1(𝐵̂) ) 

Where: 𝐼−1(β̂) represent the information matrix inverse for 

β = β̂ , and β0 represent a true value of β. To construct 

confidence intervals and test the hypothesis, this approximate 

distribution is utilized. H0: β = β0, (CAMERON & TRIVEDI, 

2012).      

2.5 Poisson Regression Model  

For data including counts, the Poisson regression model is 

the most used. any observed count, 𝑦𝑖  , is selected from a 

Poisson distribution in the Poisson regression model, and the 

mean µi is represented as a vector of predictors 𝑋𝑖  to evry ⅈ𝑡ℎ 

subject. The probability density function for the Poisson 

distribution is as follows: (CAMERON & TRIVEDI, 2012). 

𝑃(𝑌 = 𝑦) =
𝑒−µ𝑖µ𝑖

y𝑖

y𝑖!
, y = 0, 1, 2, …                                                          

…. (2.14) 

Over the range of potential values 0, 1, 2,..., the Poisson 

distribution is unimodal and right-skewing. The term 

"equidispersion" refers to the fact that it has a single 

parameter, µ >0 , which acts for both its mean as well as its 

variance. (AGRESTI, 2006) 

Although the "Poisson regression model" is appropriate for 

modeling "count data," in reality, typically the variance of 

count data exceeds its mean, leading to Over-dispersion. The 

Poisson regression model's count data causes bias in the 

findings and underestimates the parameters, therefore affects 

the standard errors and P-value. The unobserved randomized 

variations element in the function of X' could be the cause of 

this over-dispersion. (CONSUL & FAMOYE, 1992)  

the Poisson regression model is expressed as: 

𝐸(𝑦𝑖) = 𝜇𝑖                                                                                        

…. (2.15) 

𝑔(𝜇𝑖) = 𝑋𝑖
𝑇𝛽                                                                                     

…. (2.16) 

𝜇𝑖  = 𝑔˗1(𝑋𝑖
𝑇𝛽)                                                                                    

…. (2.17) 

Substituting the log link function gives: 

𝑙𝑛𝜇𝑖 = 𝑋𝑖
𝑇𝛽                                                                                         

…. (2.18) 

𝜇𝑖 = ⅇ 𝑋𝑖
𝑇𝛽                                                                                             

…. (2.19) 

The βs for the regression must be estimated using the 

maximum-likelihood estimation (MLE) method. Starting with 

the formulation for the likelihood of observing y as a function 

of β (where y𝑖, ..., y𝑛are considered to be independent), the 

MLE for the Poisson regression can be calculated. 

(Montgomery, et al., 2006) 

the likelihood function therefore is: 

𝐿(𝑦, 𝛽) = ∏ 𝑓𝑖(𝑦𝑖)
𝑛
𝑖=1  = ∏

𝑒−µ𝑖µ𝑖
y𝑖

y𝑖!
  

𝑛

𝑖=1
                                                   

…. (2.20) 

The log likelihood function is: 

𝑙 = 𝑙𝑛 ∏ (
𝑒−µ𝑖µ𝑖

y𝑖

y𝑖!
  )

𝑛

𝑖=1
                                                                              

…. (2.21) 

= ∑ 𝑙𝑛 (
𝑒−µ𝑖µ𝑖

y𝑖

y𝑖!
  )

𝑁

𝑖=1
 

=∑ (−𝜇𝑖 + 𝑦 ln 𝜇𝑖 − 𝐿𝑛𝑦!)
𝑁

𝑖=1
 

=− ∑ 𝜇𝑖 
𝑁
𝑖=1 + ln 𝜇𝑖 ∑ y𝑖

𝑁
𝑖=1  − ∑ 𝐿𝑛y𝑖!

𝑁
𝑖=1  

= −𝑛𝜇𝑖 +(∑ y𝑖
𝑁
𝑖=1 ) ln 𝜇𝑖 − ∑ 𝐿𝑛y𝑖!

𝑁
𝑖=1  

=
𝜕𝑙

𝜕𝜇𝑖
= −𝑛 + (∑ 𝑦)

1

𝜇𝑖

𝑁

𝑖=1
 = 0 

𝜇𝑖 =  
1

𝑁
∑ 𝑦 

𝑁
𝑖=1                                                                                     

…. (2.22) 

 

2.5.1 Assumptions of Poisson Regression Model 

In order to verify that the data you wish to analyze can 

really be analyzed using Poisson regression, must first 

determine whether you can use Poisson regression to analyze 

your data. This is necessary because Poisson regression should 

only be used if your data “passes” the five required 

assumptions that Poisson regression has to make in order to 

get a reliable result. It is important to do this, nevertheless, as 

it happens frequently that data will violate one or more of 

these assumptions:  

1. Count data are used to create the dependent variable. 

Data obtained for other common types of regression (linear 

regression, multiple regression, logistic regression) is differs 

from data obtained for counts. Count variables, on the contrary 

side, need integer value which must be zero or higher. 

However, since count data must be “positive” (i.e., comprise 

“nonnegative” integer numbers), it is impossible for it to 

contain negative values. Additionally, it is frequently 
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recommended that Poisson regression use only in cases that 

the mean count is a low value (e.g., less than 10). A different 

kind of regression may be more suited when there are a large 

number of counts. 

2. There may be one or more independent variables that are 

measured on such a continuous, ordinal, nominal, or 

dichotomous scale. Ordinal and nominal (dichotomous) 

variables are categorized as categorical variables in general. 

3. the observations should be independent of one another. 

This implies that each observation is independent of the 

others, i.e., no observation may inform the other observations 

in any way. This is an essential assumption. Lack of 

independent observations is mostly a problem with survey 

methodology. 

4. - Based on the model, the counts (the dependent variable) 

distributed according to a Poisson distribution. 

5. The models mean and variance are the same. This is an 

outcome of Assumption 4, which holds that a Poisson 

distribution exists. The variance for a Poisson distribution is 

equal to the mean. there is equidispersion if this assumption is 

valid. This is not always the case, nevertheless, and your data 

are either under- or over-dispersed, with over dispersion being 

the more typical problem. 

 

2.6 Differences between Cox regression models Poisson 

regression models: 

1. The dependent variable: In the Poisson regression, the 

dependent (Y) variable is an observed count, while in Cox 

regression the dependent variable (descriptive binary + time 

until event occurs). 

2. Censoring: The Poisson regression model does not deal 

with censored data while Cox regression model deals with it. 

3. Method of estimation of regression coefficients: Poisson 

regression coefficients are estimated using the Maximum 

Likelihood Estimation method, while Cox regression 

coefficients are estimated using the Partial Likelihood 

Estimation. 

4. Time: Cox regression models time to event, and Poisson 

regression models counts or rates of events. 

5. If you chop the time axis into finer and finer pieces, then 

the model will be equivalent to a cox-regression, and in that 

case the difference is only that the parameter of the time-effect 

is non-parametric in the cox-regression while it will be 

estimated together with other parameters in the Poisson 

regression model. 

2.6 Goodness-of-Fit  

After the estimating process is complete, attention may go 

to evaluating how closely the model fits the data. (Coxe, et al., 

2009) 

One of the fundamental criteria's of goodness of fit is 

Pearson's statistic. The equation below gives the Pearson 

statistics for a model with mean 𝜆ⅈ and variance 𝜔ⅈ are given 

in Equation below: 

𝜒2 = ∑
(𝑦𝑖−𝜆̂𝑖)2

𝜔̂𝑖

𝑛
𝑖=1                                                              …. 

(2.23) 

This statistic is applied to verify if the series' dispersion is 

over. It will be 𝜔ⅈ=𝜆ⅈ as a logical consequence of the Poisson 

distribution if Pearson statistic is used in Poisson regression, 

the formula takes the form in the Equation below. 

                                     𝑝𝑝 = ∑
(𝑦𝑖−𝜇̂𝑖)2

𝜇̂𝑖

𝑛

𝑖=1
                                                              

…. (2.24) 

When the calculated 𝜒𝑝
2 to degree of freedom ratio is more 

than 1, it means that the data are too dispersed and are not 

appropriate for the model. 

Deviance statistics is one method for evaluating how well a 

model fits the data. and the deviance, or G, statistic expressed 

by the following equation: 

𝐷𝑝 =  ∑ {𝑦𝑖̇ ln (
𝑦𝑖

𝜇̂𝑖
) − (𝑦𝑖 − 𝜇̂𝑖)}

𝑛

𝑖=1
                                              

…. (2.25) 

When this statistical value approaches zero, it means that 

the model is fitting the data in a better way. When the 

statistical value is zero, the model fit is optimal. The residual 

deviance needs to be as minimal as possible. The ideal 

residual deviance for Poisson regression is the number of 

observations minus the number of parameters, or the 

remaining degrees of freedom of the model. (SHINGLETON, 

2012) 

 

𝑅2 =
𝐿𝐿𝑓𝑖𝑡−𝐿𝐿0

𝐿𝐿𝑚𝑎𝑥−𝐿𝐿0
                                                                            

…. (2.26) 

 

Note that 𝐿𝐿0 is the log-likelihood of the intercept-only 

model, 𝐿𝐿𝑓𝑖𝑡  is the log-likelihood of the current model, and 

𝐿𝐿𝑚𝑎𝑥  is the maximum log-likelihood possible. The maximum 

log-likelihood occurs when the actual responses (the 𝑦𝑖  ’s) 

exactly equal the predicted responses (the µ𝑖 ’s). Notice that 

this value of R-squared varies between zero and one. (Anon., 

2016) 

 

2.7 Measures of the Model Selection 

In this study, two measures were used to compare Poisson 

regression and Cox regression models and to determine which 

model was the best. The measures for each model were 

calculated, and thus the model with smallest score was 

selected to be best model for fitting the data. 

2.7.1 Akaike’s Information Criterion (AIC) For 

Selecting Best Model 

In order to choose the suitable model, models are compared 

using Akaike's information criteria (Akaike, 1973). The 

chosen model is the one with the greatest Kullback-Leibler 

distance between itself and truth. Therefore, the AIC is 

defined as: 

AIC =  −2L +  2K                                                                  

…. (2.27) 

Where k : represents parameters number in the model and 

L: is the log-likelihood. The model with the best fit has the 

lowest AIC value compared to the others. When comparing 

models that are not nested and were fitted to the same data set 

using maximum likelihood, AIC is utilized. (ADETI , 2016) 

2.7.2 The Bayesian Information Criterion 
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One of the most common and often used tools for choosing 

statistical models is the Bayesian information criterion (BIC). 

The probability that BIC will choose the true model increases 

with the size of the training dataset according to the Bayesian 

probability application's derivation of BIC, which states that if 

a selection of candidate models includes a true model for the 

dataset. For the AIC score, the same cannot be true. 

BIC=-2logLikelihood +2*logN*k                                                

…. (2.28) 

Where:  N indicates the number of taken observations, and 

k represent the estimated parameter number. 

Calculating the BIC for each model is all that is necessary 

to compare them using the Bayesian information criteria; the 

model with smallest BIC is considered to be the best 

model.(LEE & JOHN, 2003) 

3. Results and Discussions: 

in this section we explain the basic idea about using both 

statistical methods to study the most important factors 

affecting patients with stomach cancer in in Erbil city and 

their ability to survive and compare between them. The 

research includes an applied analysis of survival using (Cox 

regression and Poisson regression) models to identify the 

factors affecting on the patient in survival analysis. and then 

the comparison between them to find out the best model for 

data analysis for patients with stomach cancer, two statistical 

measures (BIC and AIC) were used to evaluate the best 

survival model for this data by using three statistical programs 

analysis (SPSS V. 25, Mat-lab V. and STATGRAPHICS V. 

19). 

3.1 Data Collection 

The data used in this research was obtained from the official 

database of the main NanaKali Hospital, where these data 

were collected by patients through direct contact between the 

specialist doctor and patients. In this study, data were 

collected for 375 patients with stomach cancer at NANAKALI 

Main Hospital for Cancer in the Kurdistan Region of Iraq - 

Erbil. Data were collected during (5) years. Starting from 

January 1, 2016 until December 31, 2020 for all stomach 

cancer patients between the ages of (2 - 99) years and of both 

sexes (males 215 and females 160). During the study period 

(243) patients died and (132) survived under censored, with a 

follow-up period until August 10, 2021, the survival time was 

measured in months and the data contained (12) variables 

shown below:  

     Table 3-1 The Response Variables Measured for these 

Data at Diagnosis: 

Variable Name Description 

Age Age of patient at diagnosis stomach cancer 

Gender Female = (1), Male = (2) 

Event status Alive = (1), Died = (2) 

Morphology 

Adenocarcinoma = (1), Atypical carcinoid tumor 

= (2), B- cell lymphoma = (3), Carcinoid tumor = 

(4), Carcinoma = (5), Gastrointestinal stromal tumor 

= (6), Hodgkin lymphoma = (7), Lienitis plastic = 

(8), Lymphoma = (9), Malignant lymphomas = (10), 

Mucinous adenocarcinoma = (11), Neuroendocrine 

carcinoma = (12), Signet cell ring adenocarcinoma = 

(13), Tubular adenocarcinoma = (14) 

Behavior Uncertain = (1), In situ = (2), Malignant = (3) 

Grade 
grade I = (1), grade II = (2), grade III = (3), grade 

IV = (4), B-Cell = (5), Un known = (6) 

Extent 

Localized = (1), Regional by direct extension = 

(2), regional lymph nodes = (3), regional direct 

extension and lymph nodes = (4), distant metastasis 

= (5), not applicable = (6), un known = (7) 

Surgery Does not make surgery = (0), Made surgery = (1) 

Radio 
Does not take Radiotherapy = (0), Took 

Radiotherapy= (1) 

Chemo 
Does not inject Chemotherapy = (0), injected 

Chemotherapy = (1) 

Hormone Does not use hormone = (0), Used hormone = (1) 

Immune 
Does not take immune system = (0), Took 

immune system = (1) 

 

    3.2 Application of Cox-Proportional Hazard model  

One of the best methods for measuring the patients' ability 

to live for a specified period of time after medication is the 

application of Cox regression. In clinical studies, the 

effectiveness of an intervention is measured by counting how 

many individuals lived or were saved as a result of that 

intervention over time. The model building process in this 

study occurs in eleven variables (Gender, Morphology, 

Behavior, Grade, Extent, Surgery, Radio, Chemotherapy, 

Hormone, Immune, Age group) 

 

      Table 3-2 Case Processing Summary in Cox-PH 

Available in Analysis 

Case Processing Summary 

 N 

Percen

t 

Cases available in analysis Event a 243 64.8% 

Censored     

132 

35.2% 

Total 375 100.0

% 

Total 375 100.0

% 

a. Dependent Variable: time 

  

Table 3-2 shows the case processing summary in Cox PH 

available in the analysis that determines whether the event 

occurred for a specific case or not, the number of cases 

available in the event analysis is 375 cases, the analysis shows 

that there are 243 deaths, 64.8% are event data and 132 cases, 

35.2%, is the number of patients who are still alive under 

observation because the event did not happen to them. 

Omnibus tests are a type of statistical test for all variables, 

sometimes called the chi-square test. It is a statistical test 

carried out on a general hypothesis that tends to find general 

significance between the variance of parameters, while 

checking parameters of the same type they test whether the 

variance shown in the set of data is much larger than the 

unexplained variance in general. The hypothesis is: 

 

 The model includes explanatory variables. 
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 The model not includes explanatory variables. 

 

Table 3-3 Omnibus Tests of Model Coefficients 

 

-2 Log 

Likelihoo

d 

Overall (score) 
Change From 

Previous Step 

Change From 

Previous Block 

Chi-

square 

D

.f 

P-

value 

Chi-

square 

D

.f 

P-

value 

Chi-

square 

D

.f 

P-

value 

2493.3

49 

57.09

5 

1

1 

.0

00 

54.65

0 

1

1 

.00

0 

54.650 1

1 

.00

0 

 

Table 3-3 shows that the value of chi-square = 57.095 at the 

degree of freedom of 11 and the value of P-value is less at the 

level of significance 0.05, which means that the statistical 

model is statistically significant, which indicates that the 

variables in the model have importance and effect. Thus, we 

accept the null hypothesis, which states that the explanatory 

variables are included in the statistical model. 

 

Table 3-4 Omnibus Tests of Model Coefficients by 

Forward Stepwise (Conditional LR) 

 

 

step -2 Log 

Likelihoo

d 

Overall (score) 
Change From 

Previous Step 

Change From 

Previous Block 

Chi-

square 

D

f 

P-

value 

Chi-

square 

D

f 

P-

value 

Chi-

square 

D

f 

P-

value 

1𝑎 2533.2

01 

16.49

5 

1 .0

00 

14.79

8 

1 .00

0 

14.798 1 .00

0 

2𝑏 2526.9

78 

23.30

8 

2 .0

00 

6.223 1 .01

3 

21.021 2 .00

0 

3𝑐 2519.9

74 

30.19

7 

3 .0

00 

7.004 1 .00

8 

28.025 3 .00

0 

4𝑑 2514.0

73 

36.59

3 

4 .0

00 

5.902 1 .01

5 

33.926 4 .00

0 

5𝑒 2508.4

04 

43.00

9 

5 .0

00 

5.669 1 .01

7 

39.595 5 .00

0 

6𝑓 2499.9

64 

50.35

8 

6 .0

00 

8.440 1 .00

4 

48.035 6 .00

0 

 

Table (3-4) We also note 2-Log Likelihood that the result 

before including variables within the model chi-Square = 

2533.201 and after including variables, the result was 

2499.964 for 2-Log The probability of logging this decrease 

confirms the effect and contribution of the variables to the 

model. This indicates that the model is statistically significant. 

 

Table 3-5 Variables in the Equation for Cox Regression 

Variables in the Equation 

x B SE Wald df 
p-

value 

Exp(

B) 

99.0% CI for 

Exp(B) 

Low

er 

Uppe

r 

Gender .16

9 

.134 1.60

1 

1 .206 1.18

5 

.839 1.673 

Morphology .05

8 

.014 18.3

79 

1 .000 1.06

0 

1.02

4 

1.098 

Behavior .94

9 

.427 4.93

4 

1 .026 2.58

2 

.860 7.756 

Grade .12

3 

.051 5.86

1 

1 .015 1.13

1 

.992 1.289 

Extent .10

3 

.037 7.91

9 

1 .005 1.10

9 

1.00

9 

1.218 

Surgery -

.422 

.150 7.89

2 

1 .005 .656 .445 .966 

Radiothera

py 

.54

5 

.175 9.65

9 

1 .002 1.72

5 

1.09

8 

2.711 

Chemother

apy 

.34

1 

.209 2.64

6 

1 .104 1.40

6 

.820 2.411 

Hormone .34

5 

.550 .393 1 .531 1.41

2 

.342 5.826 

Immunol -

.675 

.449 2.25

8 

1 .133 .509 .160 1.619 

Age 

(Binned) 

.01

6 

.042 .142 1 .706 1.01

6 

.911 1.133 

 

Table 3-5 shows estimates of the model's coefficients, 

standard error and degree of freedom, in addition to Wald's 

test. It also shows the covariates within the model that have no 

effect or effect by comparing the value of the covariate with 

the other categories for each of the variables using Exp (B) are 

called hazard ratios (HR), shows that the event hazard 

increases as the value of the ith covariate increases, and 

therefore the duration of survival decreases., if it is equal one, 

that is, there is no effect on the event,  

in summarize: 

 HR = 1: No effect 

 HR < 1: decrease in the hazard 

 HR > 1: Increase in Hazard 

 

     and based on the level of significance, the value of 0.05 

to achieve the hypothesis results, where the value of the 

covariate is greater than one. P-value of the variable is greater 

than the value specified at the level of significance 0.05 

indicates the variable has no effect on the event, and if the 

value of P-value of the variable is less than the value specified 

at the level of significance 0.05 indicates the effect of the 

variable on the event and the patient's survival time. 

We explain each variable and their effects on patients 

with stomach cancer as follows: 

 Morphology is considered as one of the variables that 

have an impact on increasing the event risk of the 

patient's survival, a value of Exp(B) = 1.060, which is 

an increase in the risk of death for to the patient and 

p-value = 0.000 which is statistically significant, 

which indicates a significant effect on the stomach 

cancer patient. This variable increases the likelihood 

of death. 

 

 behavior variable is considered a factor in decreasing 

the survival of the patient with stomach cancer with a 

value of Exp(B) = (2.582). furthermore, the 

significant of P-value = 0.026 less than 0.05, this 

indicates that the variable is statistically significant. 

In a way that negatively affects the patient's survival, 

which increases the risk of death of the patient. 

 the value Exp(B) for the Grade of cancer is equal 

1.131 from the value of B = 0.123, which indicates a 

significant effect on the patient with stomach cancer, 

this factor increases the risk of death of the patient. 

By noting a significant value P-value = 0.015 ≤ 0.05, 

which is statistically significant. 
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 The value of Exp(B) for the extent of stomach cancer 

is equal 1.109 means that, considered to be a factor 

that has effect on increasing in the patient risk of 

death in stomach cancer. with p-value = 0.005 which 

is statistically significant effect on stomach cancer.  

 Another factor is surgery. The value of Exp(B) for 

surgery means that the stomach cancer hazard for all 

patients that make a surgery are 0.656 months. 

Surgical operations to remove cancerous tumors is 

considered one of the factors that have an effect, 

which decreases the risk of patient’s death and the p- 

value 0.005 < (α = 0.05), which is statistically 

significant. 

 According to our data the radiotherapy has an effect 

on survival of patients The estimated risk in the 

radiation group is Exp(B) = 1.725, which is an 

increase in the risk of death for patient to have or 

haven’t radiotherapy.  the p-value is 0.002 and is 

statistically significant. 

 Gender, Chemotherapy, Hormone, Immunol and Age 

group, are not significant factors because their p-

value are greater than (0.05). 

When x is the vector of all the fixed variables (Gender, 

Morphology, Behavior, Grade, Extent, Surgery, Radiotherapy, 

Chemotherapy, Hormone, Immunol, Age-binned) and β is the 

corresponding vector of the regression coefficient for the fixed 

covariates. 

The Cox-PH model with significant factor as follows: 

ℎ𝑖(𝑡) = ℎ0(𝑡) exp (0.058 𝑀𝑜𝑟𝑝ℎ𝑝𝑙𝑜𝑔𝑦 + 0.949 𝐵ⅇℎ𝑎𝑣ⅈ𝑜𝑟
+ 0.123 𝐺𝑟𝑎𝑑ⅇ + 0.103 𝐸𝑥𝑡ⅇ𝑛𝑡
− 0.422 𝑆𝑢𝑟𝑔ⅇ𝑟𝑦 + 0.545 𝑅𝑎𝑑ⅈ𝑜𝑡ℎⅇ𝑟𝑎𝑝𝑦) 

3.3 Application of Poisson regression 

Poisson regression was applied as a statistical tool in our 

study because it uses with countable data, any non-fractional 

integers. Thus, we built a statistical model using Poisson 

regression to estimate the relationship between a response 

variable (event) and multiple variables and the extent to which 

these variables affect the Stomach cancer patient, and knowing 

the patient's ability to survive. 

  Our current study recorded eleven explanatory variables 

(Gender, Morphology, Behavior, Grade, Extent, Surgery, 

Radio, Chemotherapy, Hormone, Immune, Age group) 

considered to have an effect on the response variable 

representing patient survival (event). 

A likelihood ratio test is used to determine whether the 

independent variables in total make the model more accurate 

than the intercept-only model (i.e., with no independent 

variables added). With the independent variables present in 

our example model, we have a p-value of.000 (i.e., p =.000), 

indicating that the model as a whole is statistically significant, 

as shown in table (3-6). 

\ 

 

Table 3-6 Omnibus Tests of Model Coefficients 

 

Likelihood Ratio    

 Chi-Square df  Sig. 

55.250  11  .000 

 Dependent Variable: status 

 

Table 3-7 summarizes the effect of each predictor, the signs 

of the coefficients for covariates and the relative values of the 

coefficients for component levels can provide crucial 

information about the effects of the predictors in the model. 

For covariates, positive (negative) coefficients indicate 

positive (inverse) relationships between the predictors and the 

outcome. The increased value of the positive covariate 

corresponds to the rate of reduction in the severity of the 

event, which is the patient's survival p 

we can make the following interpretations based on 

parameter estimates. 

 

Table 3-7 Parameter Estimates 

 

Parameter B 

Std. 

Error 

95% Wald 

Confidence Interval Hypothesis Test 

Lower Upper 

Wald 

Chi-Square df Sig. 

(Intercept) 6.17

0 

.110

2 

5.954 6.386 3133.996 1 .000 

gender -

.108 

.016

7 

-.140 -.075 41.738 1 .000 

Morphology -

.022 

.002

0 

-.026 -.019 127.184 1 .000 

Behavior -

.474 

.030

4 

-.533 -.414 242.144 1 .000 

Grade -

.061 

.007

2 

-.075 -.047 73.683 1 .000 

Extent -

.057 

.004

5 

-.066 -.048 156.941 1 .000 

Surgery .073 .019

3 

.035 .111 14.129 1 .000 

Radiotherapy -

.205 

.025

1 

-.254 -.156 66.924 1 .000 

Chemotherap

y 

-

.239 

.023

2 

-.285 -.194 105.849 1 .000 

Hormone -

.051 

.067

9 

-.184 .082 .556 1 .456 

Immunol .221 .045

2 

.132 .310 23.901 1 .000 

Age 

(Binned) 

-

.026 

.005

2 

-.036 -.015 24.407 1 .000 

(Scale) 1a       

 

The Poisson regression model was applied at a significant 

level of α = 0.05. Table (3-13) shows the parameters, 

estimates, standard errors, z-values, and p-values from the 

Poisson regression model. The output shows the results of the 

fit of the Poisson regression model to describe the relationship 

between patient survival time and 12 independent variable(s). 

It turns out that the P-value is less than 0.05, there is a 

statistically significant relationship between the variables at 

the 95.0% confidence level. In addition, the P-value of the 

residuals is greater than or equal to 0.05, indicating that the 

model is not significantly.  

 

According to the results of the Wald Chi square test, From 

the table (3-13), it shows that (Gender, Morphology, Extent, 
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Behavior, Surgery, Chemotherapy, Immunol, Age) estimated 

coefficient are significant because their (p-values) are less 

than 5% level, with intercept too, that contribute negatively or 

positively to survival Patient, while the estimated coefficient 

of the variable (Hormone) is not significant because it is p-

values is greater than the 5% level. we can make the following 

interpretations based on parameter estimates. 

 

 (Intercept) – This is the Poisson regression estimate 

when all variables in the model are evaluated at 

zero, the log of the expected count for the response 

variable is 6.170 units. 

 According to our data, the coefficients of variables 

(Gender, Morphology, Extent, Behavior, 

Chemotherapy, Age) are significant in poisson 

regression model and have an effect on survival of 

patients. The estimated risk of all of them are greater 

than one (Exp(B) >1), which is means an increase in 

the risk of death for patients. 

 The results of estimated coefficients of poisson 

regression showed that the variables (Surgery, 

Immunol) are considered two factors that have an 

effect which decreases the risk of patient’s death.  

 In regards to the variable, Hormone, the p-value is 

(0.456) greater than (0.05). We would fail to reject 

the null hypothesis and conclude the Poisson 

regression coefficient for Hormone is not significant. 

 

Furthermore, we can write the Poisson regression equation 

with just significant variables: 

 

Ln(𝑦) = (6.170 – 0. 108 Gender – 0. 022 Morphology – 0. 

474 Behavior – 0. 061 Grade – 0. 057 Extent + 0. 073 Surgery 

– 0. 205 Radiotherapy – 0. 239 Chemotherapy + 0. 221 

Immunol – 0. 026 Age-binned) 

 

3.4 Comparing models 

To identify the best distribution for the error terms, we will 

also compare the model summary statistics such as the Akaike 

information criterion and the Bayesian information criterion 

and -2 log(likelihood). The best model between Cox 

regression and Poisson regression will have the lowest values 

for all 3 statistics. The results are obtained using MATLAB in 

the following table: 

Table 3-8 comparing models with AIC and BIC 

Models 
No. of 

parameters 

Log 

Likelihood 
AIC BIC 

Cox 

regression 
11 

1273.99

9 
1298 

1339.

2 

Poisson 

regression 
11 

782.982

0 

806.9

82 

848.1

782 

 

Table (3-8) indicates the results for the AIC and BIC values 

which are used to comparing between two models, which of 

the two models is more suitable in our data (Cox-model or 

Poisson Model), the best model should display the lowest 

AIC, BIC and -2log(likelihood) values. 

The results show that Poisson regression model is the best 

model for our study data of stomach cancer because, it’s AIC 

equals to 806.982and BIC equals to 848.1782 are the lowest 

values in comparison to the Cox regression model's AIC 

equals 1298 and BIC equals 1339.2. 

 

 

 

2. Conclusion 

1. The Omnibus test of model effects for Poisson and 

cox models have demonstrated that the model fits the 

chosen variables however when their p-values are 

smaller than (0.05), which means that the statistical 

model is statistically significant, which indicates that 

the variables in the model have importance and 

effect. 

2. by the value of p-value of the Wald Chi square test 

improved statistically significant variables it shown 

that for both models Poisson and cox models are not 

identified the same prognostic factors that influenced 

in stomach cancer for our data set.  

3. According to the results of the cox model, the most 

significant variables that have an impact on stomach 

cancer disease are (Morphology, Behavior, Grade, 

Extent, Surgery, Radiotherapy). 

4. The results of Weibull model Shows that the 

variables that effecting on the stomach cancer for our 

data set are (Gender, Morphology, Behavior, Grade, 

Extent, Surgery, Radio, Chemotherapy, Hormone, 

Immune, Age group). 

 

5. the condition of (over dispersion) in the Poisson 

model cannot gives adequate results.  After fitting 

Poisson and cox models to the data of stomach cancer 

although there is over dispersion in our data find out 

that cox model is more performance and capable for 

our data than Poisson Regression model by using 

(Log Likelihood, AIC and BIC).  
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