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Non-uniform radiation beam intensities use in IMRT 
by computer-based optimization to achieve better dose 
distribution (Tejpal et al., 2010). Furthermore, multileaf  
collimators that use in IMRT are dynamic or static, 
which delivers high doses while minimizing dose to 
the surrounding healthy tissues (Bhatnagar et al., 2006; 
Zelefsky et al., 2002; Heron et al., 2003). Distribution of  
dose is inversely determined in IMRT, which means that 
the treatment planner must decide the dose distribution 
for each organ at risk and after that, the computer 
will start calculating a group of  the beam that will be 
generated (Spirou and Chui, 1998) and also is expected to 
improve radiotherapy by late morbidity of  treatment and 
better covers the volume of  the target (Lin et al., 2003; 
Scott-Brown et al., 2010).

IMRT contains the radiation field, in which the shape is 
in accordance with the projective shape of  planning target 
volume (PTV) in the radiation beam. And then, multiple 
fixed angle beams are usually needed for better qualities 
(Xie et al., 2014), which patient’s quality of  life can be 
more improved (Sun et al., 2014; Zhou et al., 2017; Kuang 
et al., 2012).

INTRODUCTION

Intensity-modulated radiation therapy (IMRT) was put as 
the development of  three-dimensional conformal radiation 
therapy (3D-CRT) (Bentzen, 2005; Bortfeld, 2006) to 
improve tumor control and patient survival (Navarria 
et al., 2014). The target of  radiotherapy is to deliver the 
prescribed dose to the tumor and organs at risk (OAR), 
receiving a minimum dose as much as possible. Nowadays, 
a different type of  tumors is treated by radiotherapy with 
surgery and chemotherapy (Chui et al., 2001).

The tumors can affect the nervous system (Giglio and Gilbert, 
2010). Nearly half  of  the patients who have cancer will receive 
radiotherapy as a section of  their oncologic treatment (Kumar 
et al., 2013). 3D-CRT uses computed tomography to produce 
three-dimensional volumes of  a patient’s anatomy (Goyal., 
2008) and also to visualize OAR and the tumor (Ghosh-
Laskar et al., 2016; Nutting et al., 2011).

3D-CRT is a very available radiotherapy technique which 
considered as standard (Kortmann et al., 2003; Krasin et al., 
2010; Chan, 2015).

R E S E A R C H  A R T I C L E

Intensity-modulated radiation therapy (IMRT) was put as the development of three-dimensional conformal 
radiation therapy (3D-CRT). The purpose of the present study is to compare the dosimetric analysis of two 
techniques of radiotherapy (IMRT) and 3D-CRT, which include target volume and organ at risk for both 
plans. The present study enrolled that nine patients with different types of brain cancer which previously 
irradiated from November 2018 to May 2019 were selected in Zhianawa Cancer Center in Sulaymaniyah; 
all cases were planned again by both techniques 3D-CRT and IMRT. IMRT planning provides reducing 
the dose of both right and left optic nerve mean dose for right optic nerve 13.70 Gy and left 14.93 Gy 
compared with the 3D-CRT plan (right optic nerve 23.54 Gy and left 19.13 Gy). P  = 0.2 for the right 
optic nerve and P = 0.56 for the left optic nerve were statistically significant. IMRT plan reduces dose 
to the optic chiasm compared to 3D-CRT plan, the mean dose of optic chiasm for IMRT was 33.37 Gy 
relative to 3D-CRT which was 34.28 Gy and P = 0.92. IMRT plan was better than 3D-CRT for many 
organs at risk, especially for optic chiasm and both optic nerve deliver less dose than 3D-CRT.
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The purpose of  the present study is to compare the 
dosimetric analysis of  two techniques of  radiotherapy 
IMRT and 3D-CRT, which include target volume and organ 
at risk for both techniques.

MATERIALS AND METHODS

Patient’s Selection
All of  the patient’s ages were ranged between 9 and 52 
years, three males and six females. The prescribed dose for 
all the cases was 54 Gy with 30 fractions.

Forward Planning (3D-CRT)
The present study uses Xio (release 5.00.02) three-
dimensional radiotherapy treatment planning system, the 
energy used to produce a plan in 3D-CRT for all types of  
brain cancer was 6MV photon. Three to four beams were 
designed for treatment planning. There are three main 
volumes to be into account in radiotherapy planning, 
the first volume is the position of  the tumor and this is 
known as the gross tumor volume (GTV). The second 
volume surrounds the GTV and describes the extent of  
microscopic unexpected tumor spread; this is known as 
the clinical target volume (CTV). The original concepts 
of  the GTV and CTV were detailed in report 50 from 
the International Commission on Radiation Units and 
Protection (ICRU), in 1993 (ICRU Report 50). In the 
third volume, the PTV is a geometric concept designed to 
confirm that the radiotherapy prescription dose is actually 
delivered to the CTV (Burnet et al., 2004). To cover, the 
PTV multileaf  collimator (MLC) was used. A wedge also 
used to perform dose homogeneity in PTV.

Inverse Planning (IMRT)
Seven-field and nine-field were used for inverse planning 
with the energy of  6MV photon. For seven fields were used 
to cover PTV using (MLC) at gantry angle (80°, 120°, 160°, 
200°, 240°, 280°, and 300°). For nine fields were used to 
cover PTV using (MLC) at gantry angle (0°, 40°, 80°, 120°, 
160°, 200°, 240°, 280°, and 320°).

The Tolerance Doses for OAR for Both Parallel and 
Serial Organs
The maximum dose for OAR for the lens was 7 Gy, the 
optical nerve was 55 Gy, mean dose for cochlea was 
≤45 Gy, mean dose for the eye was <35 Gy, brain steam 
was <54 Gy, and optic chiasm 55 Gy.

Prescription Dose and Dosimetric Analysis
The prescription dose for all patients was 54 Gy in 30 
fractions, for each day, the patient received 1.8 Gy. Dose-
volume histograms (DVHs) of  both techniques used to 
evaluate maximum dose, mean dose for each organ at risk, 
and cover of  PTV. All plans in both techniques depend 

on DVHs to ensure that the 95% of  the volume of  PTV 
received 95% of  the prescribed dose.

The DVHs are a tool to show the dose that is delivered to 
OAR and volume of  the target (Guckenberger et al., 2006). 
Conformity index (CI) defines as an attempt to measure 
exactly how well the distribution of  dose follows the shape 
of  the target volume, and it is a ratio of  the tissue volume 
which receives at least 95% of  the prescription dose divided 
by the volume of  the PTV, as shown in equation (1). CI 
is more conformal when its value closer to 1 (Foroudi 
et al., 2012).

 CI = V95%/VPTV (1)

Homogeneity index (HI) is a common tool that is used to 
analyze dose homogeneity in the tumor volume, as shown 
in equation (2). It is used to compare the dose distributions 
of  many treatment plans (Feuvret et al., 2006; Gong et al., 
2008; Wu et al., 2003).

 HI = D2%−D98%/D50% (2)

Where D2% and D98% represent the doses of  the PTV, 
respectively, D98% means that at least 98% of  the PTV 
receives this dose, and hence, D2% means that at least 2% 
of  the PTV receives this dose. D2% is considered to be the 
maximum dose and D98% is considered to be the minimum 
dose, lower HI values mean a more homogenous target 
dose (Yoon et al., 2007).

Statistical Methods
Statistical analysis was done using SPSS version 19 
(IBM) statistical software package. Data described by the 
mean±SD. t-test was used to compare the prescribed dose 
of  both technique, and P < 0.05 was considered to be 
statistically significant.

Ethical Considerations
The present study was approved by the Research Ethics 
Committee of  the College of  Medicine at Hawler Medical 
University.

RESULTS

Table 1 represents the clinical characteristics of  the patients.

IMRT planning provides reducing the dose of  both 
right and left optic nerve mean dose for (right was 13.7 
± 12.15 Gy and left 14.93 ± 14.19 Gy) compared with 
3D-CRT (right was 23.54 ± 18.77 Gy and left 19.13 ± 
16.15 Gy), as shown in Figures 1 and 2.

3D-CRT shows reduce dose received to left cochlea, it was 
15.8 Gy relative to IMRT that was 18.1 Gy. However, the 
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mean dose for the right cochlea was 20.01 Gy in IMRT 
and 21.14 Gy in 3D-CRT, as shown in Figures 3 and 4.

IMRT plan reduces dose to the optic chiasm compared to 
3D-CRT plan, the mean dose of  optic chiasm was 33.37 Gy 
relative to 3D-CRT which was 34.28 Gy. However, the 
3D-CRT plan shows reduce dose received to the brain 
stem (mean dose was 37.18 Gy relative to IMRT), which 
was 41.4 Gy, as shown in Figures 5 and 6.

The mean dose of  the right eye for both plans was slightly 
different for 3D-CRT was 13.15 Gy and for IMRT was 
13.27 Gy. However, for the left eye, the mean dose was 
8.41 Gy and for IMRT was 12.73 Gy. For the left lens, 
3D-CRT shows reduce mean dose than IMRT for both 
was 2.46 Gy and 3.44 Gy.

IMRT plan was better for reducing the mean dose for the 
right lens, it was 2.88 Gy compared with 3D-CRT that 
mean dose was 6.75 Gy, as shown in Figure 7.

The organ at risk for both techniques was not statistically 
significant, right and left eye, P = 0.98 and 0.65 while for right 
and left cochlea, P = 0.89 and 0.75. However, for both lenses, 
P = 0.48 and 0.56 was statistically significant. However, for 
both optic nerves P = 0.2 and 0.56, for brain stem P = 0.7, 
and optic chiasm P = 0.92 are shown in Table 2.

Mean and standard deviation of  CI for both plan 3D-CRT 
and IMRT was 0.97 ± 0.01, 0.87 ± 0.31, and P = 0.33, which 
is not statistically significant, while HI for 3D-CRT was 
0.10 ± 0.04 and for IMRT was 0.12 ± 0.03, (P = 0.195). D5% 
and D2% refer that volume (PTV) received 5%–2% of  the 
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Figure 3: Mean and standard deviation (SD±) maximum dose for 
left cochlea in IMRT versus 3D-CRT

Table 1: Clinical characteristics of the patients
Cases location of tumor volume of PTV (cm3) tumor type
1. The middle part of the brain 290.128 brain stem glioma
2.  The lower middle part of the brain 128.708 diffuse intrinsic 

pontine glioma
3. The right part of the brain 405.964 anaplastic ependymoma GIII
4. The right part of the brain 331.533 supine brain tumor
5. The right back part of the brain 78.695 meningioma
6. The upper middle part of the brain 181.568 meningioma
7. The right part of the brain 345.713 oligodendroglioma GII
8.  The middle back part of the brain 77.495 ependymoma GII 

(Cerebellar)
9. The middle part of the brain 22.690 pituitary adenoma
PTV: Planning target volume
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Figure 1: Mean±SD of the maximum dose for right optic nerve in 
IMRT versus 3D-CRT
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Figure 2: Mean and standard deviation (SD±) maximum dose for 
left optic nerve in IMRT versus 3D-CRT

0

5

10

15

20

25

3D- CRT IMRT

21.14
20.01

16.36 18.85

Mean

SD

Figure 4: Mean and standard deviation (SD±) maximum dose for 
right cochlea in IMRT versus 3D-CRT
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Figure 5: Mean and standard deviation (SD±) maximum dose for 
optic chiasm in IMRT versus 3D-CRT
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Figure 6: Mean and standard deviation (SD±) maximum dose for 
brain stem in IMRT versus 3D-CRT
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PTV for both plans was not statistically significant, which 
for IMRT was 97.59% and for 3D-CRT was 97.64% and 
P = 0.93, as shown in Figure 8.

DISCUSSION

This study shows the dosimetric comparison between 
3D-CRT plan and IMRT plan, resulting in the present study 
shows that both right and left optic nerves receive a less 
prescribed dose in the IMRT plan as relative to 3D-CRT, but 
for brain stem, 3D-CRT shows reduce dose received than 
IMRT. However, this result compares with a study done in 
Egypt by Al Zayat et al. and shows that in IMRT optic nerve 
receives a higher dose (38.86 Gy) than 3D-CRT (27.57 Gy). 
However, for brain stem, IMRT shows better pan (72.17 Gy) 
relative with 3D-CRT (73.05 Gy) (Al Zayat et al., 2014).

In 3DCRT plan which usually use two or three fields with 
wedges in relative with the IMRT plans which using more 
than three fields, using a small number of  the fields given 
advantages to the 3D-CRT plan which is less monitor units, 
short time of  treatment and make small low-dose areas. This 
is crucial because low-dose areas may induce secondary cancer 
(Moret et al., 2009; Fontenot et al., 2009; Zwahlen et al., 2009).

CONCLUSION

IMRT plan was better than 3D-CRT for many OAR,, 
especially for optic chiasm and both optic nerves deliver 
less dose than 3D-CRT, while PTV for both plans was 
slightly different. Both techniques can use to treat brain 
cancer, but if  OARs were so close to PTV that it is better 
to use IMRT than 3D-CRT.
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and 0.007 for D2% which is statistically significant, as shown 
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