
Polytechnic Journal ● Vol 9 ● No 2 ● 2019 | 1 ©2011-2019, Erbil Polytechnic University, Erbil, Kurdistan Region - F.R. Iraq

Analytical and Numerical Investigation of Hardening 
Behavior of Porous Media
Younis Khalid Khdir*
Department of Mechanical and Energy, Erbil Technology Engineering College, Erbil Polytechnic University, Kurdistan Region, Iraq

Polytechnic Journal. 2019. 9(2): 1-10
ISSN: 2313-5727
http://journals.epu.edu.iq/index.php/polytechnic

R E S E A R C H  A R T I C L E

In this study, a comparative analysis is presented between a new proposed analytical model 
and numerical results for macroscopic behavior of porous media with isotropic hardening in its 
matrix. The macroscopic behavior of a sufficiently large representative volume element, with 200 
identical spherical voids, was simulated numerically using finite element method and compared 
with elementary volume element that contains one void. The matrix of the porous material is 
considered as elastoplastic with isotropic hardening obeys exponential law for isotropic hardening. 
A New Parameter B was added with exponential law for isotropic hardening to represent the new 
proposed analytical model for macroscopic isotropic porous hardening. The new added parameter 
B depended only on the porosity. The results of the new proposed analytical model were compared 
with numerical results for different types of cyclic loading. Very good agreements were found 
between the numerical results and the proposed analytical model.
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theoretical developments and numerical formulations. They 
studied plastic behaviors in micromorphic continuum, 
such as Bauschinger effect, size effect, and ratcheting 
effect (Zhang et al., 2011, Verma et al., 2011). Several 
authors also studied the kinematics hardening properties, 
(Chaboche and Jung, 1997, Besson and Guillemer-Neel, 
2003, Besson, 2010, Rezaiee-Pajand and Sinaie, 2009, 
Mosler, 2010, Mahmoudi et al., 2011, Hashemi and Farshi, 
2011, De Angelis, 2012).

In 2013, Balan and Cazacu considered strain rate for porous 
materials in the matrix phase. They noted that a very good 
description of  the plastic behavior for large strains can be 
obtained using strain-rate potentials, and such formulations 
are particularly suitable for design optimization.

A thermodynamically consistent multi-scale, rate-
dependent, and non-local approach was developed by 
Voyiadjis and Song, 2002. A simple analytical model of  
void growth was introduced for studying the behavior of  
a single cylindrical or spherical-ellipsoidal void in a plastic 
material and also of  any three-dimensional (3D) void in 
a porous material containing a periodic array of  voids. 
They presented a simple analytical model of  void growth 
for studying the behavior of  a single spherical/ellipsoidal 
void in a plastic material. They used a 3D void in a porous 
material containing a periodic array of  voids. The effect 
of  the stress triaxiality on the void growth has been taken 

INTRODUCTION

Most of  the engineering components and structures 
are subjected to cyclic loadings. It is important to take 
cyclic plasticity and hardenings into account, so as to be 
able to predict the fatigue life of  components under the 
cycle fatigue regime, (Ristinmaa, 1995, Sorić et al., 2000, 
Chaboche et al., 2012).

Other authors were studied the mechanical behavior 
of  composite materials under cyclic loading. Samrout 
presented a model for a steel composite under cyclic 
loading (Samrout et al., 1997), Zhao studied aluminum alloy 
with considering hardening, they tried to simulate spring 
back using a combined kinematic/isotropic hardening 
model. The material parameters in the hardening model 
were identified by an inverse method using a three-point 
bending test. The test was conducted on aluminum sheet Al 
6022-T4 (Zhao and Lee, 2001). Doghri studied two-phase 
elastoplastic materials under cyclic loading (Doghri and 
Ouaar, 2003, Doghri and Friebel, 2005). Zhang and Verma 
presented cyclic plasticity model for mixed hardening where 
they considered a small strain micromorphic elastoplastic 
model with isotropic/kinematic hardening for modeling 
the size effect and Bauschinger effect in material with 
microstructure. They used two numerical examples, 
included a thin film and a plate with underlying structures 
subjected to cyclic loading. They were analyzed to verify the 
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into account in the model together with the macro- and 
microscopic factors such as the hardening exponent, the 
stress components, the volume fraction of  voids, the void 
shape and spacing, and the constitutive softening (Dung, 
1992).

There is a lot of  studies about porous materials. Some of  
them deal with plasticity models. The classical plasticity 
model of  Gurson model contains the porosity as internal 
variable and the author considered perfect plastic in the 
matrix of  porous materials (Gurson, 1977). Tvergaard 
proposed the extended yield criteria of  Gurson type model 
in two different studies (Tvergaard and Needleman, 1984, 
Tvergaard, 1982), so called Gurson-Tvergaard-Needleman 
(GTN) model, with the new parameters qi, with i=1, 
2, 3, to adjust their experiments, and, it has been used 
most frequently. In the GTN model, isotropic hardening 
is accounted for the flow stress of  the matrix material 
σY, while in Tvergaard and Needleman, 1984, study, the 
modification of  f* (void coalescence) was proposed as a 
piecewise linear function of  the initial porosity f. The value 
of  f* showed an increase of  porosity due to the coalescence 
of  the voids, and then the critical void volume fraction 
fc has been extended. The non-uniform transformation 
field analysis was used and the non-uniform distribution 
of  local plastic strain in the solid matrix was taken into 
account by Jiang et al., 2011. A new pressure-dependent 
yield function was proposed by introducing a plastic 
Poisson’s ratio within the theoretical formulation of  the 
plastic potential to derive the equivalent stress–strain curve 
and an exponential hardening law was introduced. The 
multi-axial problem was reduced to a uniaxial equivalent 
one, while, the parameters reduced to two. They presented 
that the experimental curves can be used for parameters 
identification (Carollo et al., 2016).

Studying hardening properties for porous materials also are 
one of  the interesting subjects by other authors. Becker 
and Needleman (1986) and Mear and Hutchinson (1985) 
proposed the linear hardening into Gurson model (Becker 
and Needleman, 1986, Mear and Hutchinson, 1985). 
Ristinmaa presented the comparison between Gurson 
model and unit cell model (Ristinmaa, 1997), while Becker 
and Needleman, 1986, indicated the void growth during 
isotropic and kinematic hardening for porous materials 
they used the same principal of  Ristinmaa. Another 
analytical function, for spherical void in a spherical volume 
element, was proposed by Leblond, the author considered 
incompressible isotropic and kinematic hardening matrix 
material (Leblond et al., 1995). They were proposed an 
extension of  GTN model. Later, the same principle is used 
by Jin et al., 2008, Seifert and Schmidt, 2008, Seifert and 
Schmidt, 2009, Siad et al., 2009. They studied the evaluation 
of  the yield surface of  porous materials, using elementary 

volume element containing one void, using finite element 
method. A 3D unit cell, with one void, is simulated by 
Kuna and Sun, 1996, considering void growth in ductile 
materials. Steglich compared calculation of  a unit cell with 
Gurson and porous metal plasticity model (LPD) with 
examining hardening, using continuum damage mechanics 
(Steglich et al., 2005). Chawla discussed the general effects 
of  porosity on the mechanical behavior (tensile and fatigue) 
of  a specific composite. The discussed studies focus on the 
calculation of  a unit cell and evaluate the damage under 
cyclic loading with hardening and some other cases and 
they discussed the loading stories (Chawla and Deng, 2005). 
They found that increasing sintered density resulted in 
lower pore fraction, more spherical pore shape, and smaller 
average pore size. They noticed that increasing pore size 
was correlated directly with an increase in the irregularity 
of  pore shape.

Isotropic hardening model for matrix phase used in this 
study is isotropic hardening as in Equation 1 and, for 
non-linear hardening, the most common equations used 
for isotropic hardening are power law (Ludwik law), 
Equation 2, and the exponential law (Voce law), Equation 3, 
which were equations used recently by several authors, for 
example, Chaboche, 1986, Simo and Hughes, 2006, Steglich 
et al., 2005, Allain and Bouaziz, 2008, Seifert and Schmidt, 
2008, Seifert and Schmidt, 2009, Cardoso and Yoon, 
2009, Taherizadeh et al., 2009, Cao et al., 2009, Leu and 
Li, 2012, Chaaba, 2013. Linear and non-linear evolutions 
of  isotropic hardening, for the matrix phase only, can be 
calculated according to the equations below, power law or 
exponential law, respectively:

  σ σ εY o
pH= +  (1)

  
p b

Y o H ( )      (2)

  σ σ ε
Y o

bQ e
p

= + − −( )1  (3)

For porous materials, in this paper, it is considered that the 
matrix phase obeys Voce law of  isotropic hardening, where 
σY is the macroscopic uni-axial stress, and Q corresponds 
to the amplitude of  the exponential function (saturation 
hardening, positive or negative). b denoted the coefficient 
of  decay (rate of  saturation hardening). H is material 
parameter (plastic hardening modulus), εp represents the 
microscopic equivalent plastic strain, and σ0 the initial yield 
stress of  the pure matrix. Q and b can be adjusted to a given 
material. The sum of  Q and σ0 is denoted as the maximal 
yield surface radius in deviatory stress space. b governs the 
shape of  the hardening curve between the lower σ0 and 
the upper (σ0+Q) bounds. Increasing the value of  b leads to 
reach the upper bound faster, for Q=0 or b=0, isotropic 
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hardening does not occur. The variable p is the cumulated 
plastic strain. Isotropic hardening is applied to the yield 
as follows:

    σ σ σi s o e q Y= −  (4)

σeq has the same scalar measure of  the von Mises stress 
equivalent, Equation 6.

Assume, at this point, that the material used is a plastic 
porous with porosity f. The deviatory von Mises equivalent 
stress 

eq   and the hydrostatic part of  the macroscopic 
stress tensor eq  are:

 Σm t r= ( ) = + +1
3 3

11 22 3 3σ
σ σ σ

 (5)

 Σe q =

−( ) + −( ) +

−( )
σ σ σ σ

σ σ

11 22
2

11 3 3

2

22 3 3

2

2
 (6)

The equivalent plastic strain εp can be determined according 
to the equation below, (Buryachenko, 1996, Sorić et al., 
2000, Besson and Guillemer-Neel, 2003, Steglich et al., 
2005, Chaboche, 2008, Jin et al., 2008, Seifert and Schmidt, 
2008, Seifert and Schmidt, 2009):

      ε εp p

t

t
d t=

=∫ 
0

 (7)

        ε ε εp
i j
p

i j
p= 2

3
 (8)

where t represents time and is plastic strain rate.

Several authors used the same principle of  Voce law for 
estimating hardening properties and they proposed the 
material parameters (Q, b) for different materials and 
composites, for example, Chow and Yang, 2003, Allain and 
Bouaziz, 2008, Cardoso and Yoon, 2009, Taherizadeh et al., 
2009, Cao et al., 2009, Rousselier et al., 2010, Leu and Li, 
2012, Chaaba, 2013. Based on Equation 3, the relationship 
between the equivalent stress and the equivalent strain 
or multi-component strain hardening model can be 
expressed as:

 Σe q o i
i

bQ e i
p

= + −∑ −σ ε( )1  (9)

For example, Lademo et al., 1999, Chow and Yang, 2003.

The objective of  this study is to propose an analytical 
equation that is able to describe macroscopic hardening 

properties for porous materials under tension or 
compression or tension-compression. In this study, a new 
general analytical model is proposed which can be used 
for porous materials with different porosities and volume 
fraction through using numerical calculations finite element 
for a 3D representative volume element (RVE).

The results in this study obtained through performing 
numerical finite element results of  a sufficiently large 3D 
RVE of  porous material. The considered volume contains 
200 randomly distributed identical spherical voids. An 
elementary volume element, with one centered spherical 
void, is also considered in the finite element simulation. 
The proposed analytical model is an extension of  the 
exponential law for isotropic hardening of  the pure matrix. 
This macroscopic model is proposed based on the 
numerical calculations of  3D RVE finite element method. 
A new parameter is added to the exponential law for 
hardening in the matrix model, to adjust the analytical 
results from exponential law to the obtained results from 
numerical finite element. The numerical results are obtained 
in the case of  simple tension tests for different porosities 
considering isotropic hardening in the matrix phase. Then, 
to test the efficiency of  the proposed macroscopic 
analytical model, it compared in the case of  cyclic loading 
(tension and compression) with numerical results. The 
equivalent stress Σe q ,  as explained in equation 9, is 
described using the multi-component strain hardening 
model. The yield stress and strain hardening constants are 
fitted to the uniaxial stress-strain curves in a reference. 

The motivation of  proposing this analytical model is there 
are few studies about isotropic of  porous materials, which 
is an important subject. However, there are a lot of  studies 
conducted about isotropic hardening for materials and 
composites as well, for example, Khan and Jackson, 1999, 
Verleene et al., 2002, Khoei and Azami, 2005, Berisha et al., 
2010, Kossa and Szabó, 2009. Hence, in this paper, an 
analytical model for isotropic porous hardening is proposed.

The present paper is organized as follows; in section 2, 
the investigated microstructure, computational method, 
and proposed analytical model are presented. The results 
are presented and discussed in section 3; some concluding 
remarks are given in section 4.

COMPUTATIONAL HOMOGENIZATION

The procedure of  creating 3D RVE with FE mesh for 
porous materials is presented here. Indicating materials 
properties to the matrix are one of  the essential steps 
toward presenting the modeling and numerical analysis. The 
procedure for defining boundary conditions is explained. 
The mesh size and the steps of  the calculation for different 
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microstructures and different volume fractions are also 
explained in detail in this section.

Microstructure and Mechanical Behavior

Materials considered in this study are made of  a plastic matrix 
containing identical spherical voids randomly distributed. 
The microstructure is plastic matrix with random or 
periodically distribution of  voids, through studying RVE, 
containing 200 randomly distributed voids or elementary 
volume elements contains one centered void, respectively, 
Figure 1. The Young’s modulus of  the matrix E=207MPa 
and the Poison ratio v=0.3 are assumed. The saturation 
hardening Q=200 and the rate of  saturation hardening b=10, 
which supposed to fulfill the von Mises plasticity model with 
initial yield stress σ0=245MPa is performed, considering that 
there is isotropic hardening, and there is no overlapping 
between the voids, while the random distribution of  200 
voids in an RVE represents random microstructure and 
elementary volume element which contains only one void 
represents a periodic microstructure.

Creating Microstructure
Several schemes will be possible to generate microstructures 
with matrix and spherical voids, distributed periodically 
or randomly, which can be defined by the radius and 
coordinates of  the centers of  the spherical voids. The 
FE method was chosen for the numerical computations. 
The FE calculations were carried out with Zebulon 
FE software. The obtained microstructure consists of  
randomly or periodic distributed non-overlapping identical 
spherical voids embedded in the matrix. In Figure 1, a cubic 
microstructure deals about elementary volume element 
with one centered void and the large RVE size containing 
200 voids with volume fractions f=0.23.

Boundary Conditions
The second important issue for the numerical tests, 
after generating microstructures, concerns the boundary 
conditions. For a uni-axial tensile loading in the x direction, 
for example, Figure 2 prescribed these conditions as follows:
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in which, u, v and w are the applied displacements in the, 
x, y, and z directions, l is the RVE length, and δ is the 
prescribed displacement.

Then, in the tri-axial case, the boundary conditions have 
been controlled triaxiality. Overall triaxiality varied through 
changing two parameters, α and β. For the simulation time 
t of  the boundary conditions, the following relations have 
been used. For more detail about choosing typical boundary 
condition, see  (Besson et al., 2006, Fritzen et al., 2012, 
Khdir et al., 2013, Khdir et al., 2014, Khdir et al., 2015):
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Here, ε0>0 is a prescribed deformation rate.

Figure 2: Description of boundary conditions

Figure 1: Examples of porous microstructures contain porosity 
of f=0.23, with mesh and without mesh, (a and b) representative 
volume element with 200 random voids and (c and d) cross-section 
of elementary volume with one centered void

a b

c d
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The shear components considered of  the macroscopic 
stress tensor are equal to zero. The hydrostatic stress and 
von Mises stress depend only on the diagonal components 
of  the macroscopic stress.

RESULTS AND DISCUSSION

Behavior Law of Pure Matrix
For non-porous plastic material, pure matrix, with isotropic 
hardening, the user behavior law is shown in Figure 3, in 
the case of  cyclic loading. This exponential law is given 
by Equation 3. This behavior law is used for the matrix 
during our studied porous materials. Noting that, for each 
cycle, after hardening, the accumulated stress is employed 
for calculating the new yield stress σ0.

The Macroscopic Behavior of Porous Materials
In this section, the macroscopic behavior of  porous materials 
is presented, using numerical calculations for 3D RVE. 
A new parameter B is proposed and calculated to construct 
an analytical macroscopic behavior model for the studied 
porous material. Our new proposed model is, simply, the 
exponential law, of  pure matrix, multiplying by the new 
determined parameter B, as shown in the following equation:

 σ σ ε
Y o

bB Q e
p

= + −( )−[ ]1  (12)

Based on the same strain methods, the equation evaluated, 
which explains the relationship between the porosity f 
and the new proposed parameter B. Depending on the 
numerical results; the analytical model of  exponential law 
is adjusted, Equation 10. To verify the efficiency of  the 
new proposed parameter B, the numerical and the analytical 
results, using Equation 12, are plotted in Figure 4, for 
different porosities: f=0.05, f=0.13,and f=0.23. This figure 
indicates that the proposed analytical model can be used 
to predict the macroscopic stress-strain curves for porous 
materials with isotropic hardening.

The new proposed parameter B can be determined 
according to the following equation:

  B q f q= − −1 21( )  (13)

Then, for calculating the exact values of  the new proposed 
parameter B, in each case, some points were taken for the 
same plastic strain for all the tested RVE with different 
porosities, as indicated if  Figure 5a. According to numerical 
tests, the values of  were evaluated for each stage of  
isotropic hardening and for different porosities: f=0, f=0.5, 
f=0.13, and f=0.23. The relationship between the new 
calculated parameter B and the used porosities has been 
plotted in Figure 5b. Then found that the new results are 

almost the same in each case. The average of  parameters, 
in each stage of  same plastic strain, is used to evaluate 
the relationship between the porosities and the values 
of  the new proposed parameter B. Illustrating that, this 
parameter is strongly depend on the porosity. Depend on 
using numerical method, a mathematical equation is found, 
so as to correctly predict the values of  the new proposed 
parameter B. The values of  q1 and q2 are determined as: 
q2=1.263 and q2=0.26. The error percent is <0.006%.

Comparison between Numerical FE Results and 
Analytical Model with Isotropic Hardening under 
Cyclic Loading
Three different volume fractions were tested numerically 
using 3D RVE to predict the non-linear isotropic 
hardening and under cyclic loading, then compared with 
analytical results using the same proposed parameter 
B with exponential law; details about the comparison are 

Figure 3: Behavior law of pure matrix, cyclic loading

Figure 4: Comparison between analytical and numerical results 
for porous material with isotropic hardening
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presented and very good matching between the numerical 
and analytical results is shown in Figure 6.

In Figure 6a, the tension-compression stress-strain resulted 
in three different volume fractions of  porous materials with 
perfect plastic without pores is presented. It has been noticed 
that the yield stress decreases according to the increase of  
porosity, because of  the structure change, while the relation 
remains parallel between the porous materials and plastic 
material without pores. Then, the same relations were 
plotted, as shown in Figure 3, while the results (stress-strain 
curves) obtained based on the analytical model (Equation 8) 
using the values of  the new proposed parameter B, as shown 
in Figures 6, the analytical results are almost resemble the 
numerical finite element results of  3D RVE. To show clearly 

the comparison between the new analytical model and 
numerical finite element results, the results of  each volume 
fraction are plotted separately. The results of  plastic matrix, 
the three different volume fractions f=0.5, f=0.13, and f=0.23 
are plotted in Figure 6, respectively. Then, the efficiently 
of  the new model with the new proposed parameter B 
with different volume fractions is interested. The proposed 
analytical model for porous materials can be used for 
different volume fractions, which is between 0.05 and 0.23.

Comparison between Numerical Result and Analytical 
Model for RVE and Elementary Volume Element with 
Isotropic Hardening
Most of  the authors use the elementary volume element 
containing one void, even widely used in the literature, but 

Figure 5: Verification of the calculation of the new parameter, (a) same strain for each porosity, and (b) relationship between new 
parameter and porosity, in different strains

a b

Figure 6: The comparison between the analytical and numerical results for different volume fractions; (a) analytical and numerical for 
matrix; analytical and numerical (b) f=0.05; (c) f=0.13; (d) f=0.23

a b

c d
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always represent the minor bound of  the real mechanical 
response in both cases tension or compression; the 
comparison between the results of  elementary volume 
containing one void and the results of  large RVE which 
contains 200 voids are explained, the difference between the 
two cases for three different volume fractions is indicated 
clearly; Figure 7a-c.

Predicting the Linear Isotropic Plastic Hardening 
Modulus of Porous Materials
The numerical finite element result which is corresponding 
3D RVE microstructure is compared with analytical 
results using the same parameter B which is, in this 

case, considered that there is plastic hardening. Two 
different volume fractions were tested for each case 
of  the 10 different plastic hardening. Modulus H was 
considered. Twenty numerical finite element tests (10) 
for each volume fraction compared with analytical model 
using Equation 16, and the same proposed parameter was 
used which it depends on the volume fraction. Moreover, 
plastic hardening modulus can be determined according 
to the following equation.

  H H Bp o r o u s m a t r i x=  (14)

and   σ σo p o r o u s o m a t r i x
B( ) = ( )

Figure 7: The differences between elementary volume element containing one void and RVE contains 200 voids for different volume 
fractions; (a) f=0.05, (b) f=0.13, and (c) f=0.23

a b

c

Figure 8: Examples of microstructures for different hardening modulus with volume fraction (a) f=0.13 and (b) f=0.23, and number of 
voids n=200, the lines represent numerical results and the other signs (+, o, x) represent analytical results

a b
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Based on the linear isotropic hardening rule; for example, 
Chaboche, 1986, Simo and Hughes, 2006,

  σ σ εY o
pH B= +( )  (15)

The above equation can be used for different volume 
fractions to evaluate the plastic hardening modulus for 
porous materials. The stress-strain curve for isotropic 
hardening porous materials can be determined by the 
equation below:

  σ σ εY o
pH B= +( )  (16)

Where the slope of  the curve is given by the constant plastic 
hardening modulus H, whereas εp denotes the accumulated 
or cumulative plastic strain, (Sorić et al., 2000, Besson and 
Guillemer-Neel, 2003, Steglich et al., 2005, Chaboche, 
2008, Jin et al., 2008, Seifert and Schmidt, 2008, Seifert 
and Schmidt, 2009). Then, two types of  volume fraction 
with 10 different plastic hardening modulus H, can justify 

the new proposed parameter B during isotropic hardening. 
Examples of  the results explained well in Figure 8, 
predicting plastic hardening modulus also one of  the 
important steps so as to define the whole stress-strain 
curves for porous materials during isotropic hardening. 
Any change in the volume fraction leads to change the 
hardening parameter, i.e., the slope of  the curves depends 
on the porosity of  the materials directly.

Predicting the Yield Stress for Porous Materials 
Considering Isotropic Hardening
In this group of  numerical tests, the author explain the 
determination of  the yield stress and stress-strain curves of  
the porous materials, when there is the isotropic hardening, 
and author compared them with analytical results using 
Equation 16. Based on the numerical results, a good 
agreement is obtained between the numerical results and 
analytical results for several porous materials with different 
yield points, for each volume fraction 10 different yield 
stresses were tested, a total of  20 numerical tests showed 
that author can predict a yield stress of  the porous material 
considering isotropic hardening analytically depending on 
the equation 16 examples are shown in Figure 9. Based on 
the numerical results, an important point can clarify that 
the yield stress significantly depends on the porosity of  the 
materials. The increase of  porosity leads to decrease in the 
effective yield stress, and vice versa.

Predicting the Equivalent Stress-Strain Curves for 
Porous Materials, with Isotropic Hardening

The equivalent stress Σe q , as explained in Equation 9, is 
described using the multi-component strain hardening 
model. The comparison between the analytical and 
numerical results is presented in Figure 10. The yield stress 
and strain hardening constants are fitted to the uniaxial 
stress-strain curves in a reference direction. To obtain only 
equivalent stress and the zero value of  hydrostatic stress, 
the values of  α,β should be as follows; α=1 and β=0. 

Figure 10: Comparison between analytical results and numerical 
finite element results for porous material with isotropic hardening 
in case of triaxial tension

Figure 9: Examples of microstructures of different yield points with volume fraction (a) f=0.13 and (b) f=0.23, and number of voids 
n=200, the lines represent numerical results and other signs (+, o, x) represent analytical results, and it considered isotropic hardening 
with the same modulus for all the tests

a b
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Increasing the strain on the element leads to increase strain 
hardening up to 0.25% of  the total equivalent strain and 
then became stable and continue because of  the hardening 
saturation of  the crystal grains. Based on the porosity of  
elements, the stress equivalent changes according to the 
ration of  the volume fraction f. there is more agreement 
between the two results in the higher volume fraction f=23, 
while there is a little difference for lower porosity f=5.

CONCLUSION

In this study, a new analytical model is presented for 
predicting macroscopic behavior for porous materials, the 
matrix is considered elastoplastic with isotropic hardening 
and it fulfill the exponential law (Voce law) for isotropic 
hardening. A New Parameter B added to the model. The 
proposed analytical model represents the extension of  
exponential law for isotropic hardening in, which can be 
used with the new added parameter for determination of  
macroscopic behavior of  porous materials with isotropic 
hardening. The results of  the new proposed analytical 
model compared with numerical results are obtained 
from calculating the finite element operation on a large 
RVE which contains 200 voids and also the results were 
compared with elementary volume element that contains 
only one centered void. Different volume fractions were 
tested numerically and analytically. Very good agreements 
between numerical and analytical results were found in 
each case of  the large RVE that contains 200 voids, while 
the elementary volume element contains one void, given 
a minor bound. Based on the simulation, in this study, can 
use the proposed analytical model for a wide range of  
volume fractions between f=0.05 and f=0.23 to determine 
the macroscopic behavior for porous materials.
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