Biocompatibility of Styrene-butadiene Copolymer-modified Calcium Phosphate and Mineral Trioxide Aggregate

A Comparative Histological Study

Authors

DOI:

https://doi.org/10.25156/ptj.v10n2y2020.pp53-59

Keywords:

Butadiene, Calcium phosphate, Inflammation, Root canal filling materials, Subcutaneous tissue

Abstract

The biocompatibility of root canal filling material is one of the basic conditions for a successful endodontic treatment and healing of the periodontium. This study was aimed to evaluate the biocompatibility of calcium phosphate cement modified with the styrene-butadiene copolymer-modified calcium phosphate (mCPC) by its implantation in the subcutaneous tissue of rabbit. Fifteen female rabbits of comparable weight were used in this study, each one had received three different tubes; one containing mCPC, the other with mineral trioxide aggregate Fillapex, and an empty control tube on the subcutaneous tissue of thighs. After a definite time (3, 7, and 14 days), the tissues around the tubes were collected, fixed, and processed for histologic evaluation. A histopathological specialist measured the intensity of inflammation. Kruskal–Wallis test was used to analyze the data. The results showed a significant difference with mCPC group in different periods, there was a high intensity of inflammation at the beginning, then it fell, and sustained as mild inflammation. One can conclude that the new formulation of CPC considered biocompatible, which rises the success rate of endodontic treatment.

Downloads

Download data is not yet available.

References

Bigi, A., B. Bracci and S. Panzavolta. 2004. Effect of added gelatin on the properties of calcium phosphate cement. Biomaterials. 25(14): 2893-2899.

Bilginer, S., I. T. Esener, F. Söylemezoğlu and A. M. Tiftik. 1997. The investigation of biocompatibility and apical microleakage of tricalcium phosphate based root canal sealers. J. Endod. 23(2): 105-109.

Boehm, A. V., S. Meininger, A. Tesch, U. Gbureck and F. A. Muller. 2018. The mechanical properties of biocompatible apatite bone cement reinforced with chemically activated carbon fibers. Materials (Basel). 11(2): 192.

Browne, R. and L. Friend. 1968. An investigation into the irritant properties of some root filling materials. Arch. Oral Biol. 13(11): 1355-1316.

Camilleri, J. 2008. Characterization of hydration products of mineral trioxide aggregate. Int. Endod. J. 41(5): 408-417.

Camilleri, J., F. E. Montesin, S. Papaioannou, F. McDonald, and T. R. Pitt Ford. 2004. Biocompatibility of two commercial forms of mineral trioxide aggregate. Int. Endod. J. 37(10): 699-704.

Derakhshan, S., A. Adl, M. Parirokh, F. MashadiAbbas and A. A. Haghdoost. 2009. Comparing subcutaneous tissue responses to freshly mixed and set root canal sealers. Iran. Endod. J. 4(4): 152.

Ghanaati, S., I. Willershausen, M. Barbeck, R. Unger, M. Joergens, R. Sader and B. Willershausen, 2010. Tissue reaction to sealing materials: Different view at biocompatibility. Eur. J. Med. Res. 15(11): 483.

Gomes-Filho, J. E., B. P. F. Gomes, A. A. Zaia, C. R. Ferraz and F. J. Souza-Filho. 2007. Evaluation of the biocompatibility of root canal sealers using subcutaneous implants. J. Appl. Oral Sci. 15(3): 186-194.

Grossman, V. 2014. Grossman’s Endodontic Practice. 13th ed. Wolters Kluwer India Pvt. Ltd., Maharashtra.

Guerreiro-Tanomaru, J. M., M. A. H. Duarte, M. Gonçalves and M. Tanomaru-Filho. 2009. Radiopacity evaluation of root canal sealers containing calcium hydroxide and MTA. Braz. Oral Res. 23(2): 119-123.

Khashaba, R. M., M. Moussa, C. Koch, A. R. Jurgensen, D. M. Missimer, R. L. Rutherford and J. L. Borke. 2011. Preparation, physicalchemical characterization, and cytocompatibility of polymeric calcium phosphate cements. Int. J. Biomater. 2011: 467641.

Konjhodzic-Prcic, A., S. Jakupovic, L. Hasic-Brankovic and A. Vukovic. 2015. Evaluation of biocompatibility of root canal sealers on l929 fibroblasts with Multiscan EX spectrophotometer. Acta. Inform. Med. 23(3): 135-137.

Lönnroth, E. C. 2005. Toxicity of medical glove materials: A pilot study. Int. J. Occup. Saf. Ergon. 11(2): 131-139.

Mestieri, L. B., A. L. Gomes-Cornelio, E. M. Rodrigues, L. P. Salles, R. Bosso-Martelo, J. M. Guerreiro-Tanomaru and M. Tanomaru- Filho. 2015. Biocompatibility and bioactivity of calcium silicatebased endodontic sealers in human dental pulp cells. J. Appl. Oral. Sci. 23(5): 467-471.

Min, K. S., H. S. Chang, J. M. Bae, S. H. Park, C. U. Hong and E. C. Kim. 2007. The induction of heme oxygenase-1 modulates bismuth oxide-induced cytotoxicity in human dental pulp cells. J. Endod. 33(11): 1342-1346.

Miyamoto, Y., K. Ishikawa, M. Takechi, T. Toh, T. Yuasa, M. Nagayama and K. Suzuki. 1999. Histological and compositional evaluations of three types of calcium phosphate cements when implanted in subcutaneous tissue immediately after mixing. J. Biomed. Mater. Res. 48(1): 36-42.

Moura, C. C. G., T. C. Cunha, V. O. Crema, P. Dechichi and J. C. G. Biffi. 2014. A study on biocompatibility of three endodontic sealers: Intensity and duration of tissue irritation. Iran. Endod. J. 9(2): 137.

Patel, S. 2011. Optimising Calcium Phosphate Cement Formulations to Widen Clinical Applications. University of Birmingham, England.

Perez, R. A., H. W. Kim and M. P. Ginebra. 2012. Polymeric additives to enhance the functional properties of calcium phosphate cements. J. Tissue Eng. 3(1): 1-20.

Scelza, M. Z., C. A. Campos, P. Scelza, C. S. Adeodato, I. B. Barbosa, F. D. Noronha and G. G. Alves. 2016. Evaluation of inflammatory response to endodontic sealers in a bone defect animal model. J. Contemp. Dent. Pract. 17(7): 536-541.

Silva, A. G. D., N. C. T. Marques, N. Lourenço Neto, T. Z. F. Melo, V. A. . Passos, C. F. D. Carrara and T. M. D. Valarelli. 2013. In vivoevaluation of tissue response to new endodontic sealers. RSBO. 10: 153-160.

Silva, E. J., T. P. Rosa, D. R. Herrera, R. C. Jacinto, B. P. Gomes and A. A. Zaia. 2013. Evaluation of cytotoxicity and physicochemical properties of calcium silicate-based endodontic sealer MTA Fillapex. J. Endod. 39(2): 274-277.

Silva-Herzog, D., T. Ramirez, J. Mora, A. J. Pozos, L. A. Silva, R. A. Silva and P. Nelson-Filho. 2011. Preliminary study of the inflammatory response to subcutaneous implantation of three root canal sealers. Int. Endod. J. 44(5): 440-446.

Silveira, C. M. M., S. C. S. Pinto, R. D. A. Zedebski, F. A. Santos and G. L. Pilatti. 2011. Biocompatibility of four root canal sealers: A histopathological evaluation in rat subcutaneous connective tissue. Braz. Dent. J. 22(1): 21-27.

Tagger, M. and E. Tagger. 1986. Subcutaneous reactions to implantation of tubes with AH26 and Grossman’s sealer. Oral Surg. Oral Med. Oral Pathol. 62(4): 434-440.

Torabinejad, M. and M. Parirokh. 2010. Mineral trioxide aggregate: A comprehensive literature review--part II: Leakage and biocompatibility investigations. J. Endod. 36(2): 190-202.

Yang, J. M. and S. C. Tsai. 2010. Biocompatibility of epoxidized styrene-butadiene-styrene block copolymer membrane. Mater. Sci. Eng. C. 30(8): 1151-1156.

Yoshino, P., C. K. Nishiyama, K. C. Modena, C. F. Santos and C. R. Sipert. 2013. In vitro cytotoxicity of white MTA, MTA Fillapex(R) and Portland cement on human periodontal ligament fibroblasts. Braz. Dent. J. 24(2): 111-116.

Zmener, O. 2004. Tissue response to a new methacrylate-based root canal sealer: Preliminary observations in the subcutaneous connective tissue of rats. J. Endod. 30(5): 348-351.

Zmener, O., M. B. Guglielmotti and R. L. Cabrini. 1988. Biocompatibility of two calcium hydroxide-based endodontic sealers: A quantitative study in the subcutaneous connective tissue of the rat. J. Endod. 14(5): 229-235.

Published

2020-12-30

How to Cite

kaka, H. B., & Salman, R. F. (2020). Biocompatibility of Styrene-butadiene Copolymer-modified Calcium Phosphate and Mineral Trioxide Aggregate: A Comparative Histological Study. Polytechnic Journal, 10(2), 53-59. https://doi.org/10.25156/ptj.v10n2y2020.pp53-59

Issue

Section

Research Articles