Effect of Adding Magnesium Oxide Nanoparticles on the Antimicrobial Activity of a Denture Soft Liner

Authors

DOI:

https://doi.org/10.25156/ptj.v10n2y2020.pp132-137

Keywords:

Soft liner, Nanoparticle, Candida albicans, Staphylococcus aureus, Biofilm

Abstract

Microbial growth and colonization are one of the disadvantages after the long-term use of denture soft liners. This study was aimed to evaluate the effect of the addition of magnesium oxide nanoparticles (MgONPs) on the antimicrobial activity of a denture soft liner. A total of 84 samples were prepared from a soft denture liner and divided into two groups, control group and test group to which 3% by weight of MgONPs were added, antimicrobial tests for Candida albicans, Staphylococcus aureus, and a mixture of the biofilm of both microorganisms were done, cell density count and adherence assay test was recorded before and after 6 months storage in distilled water. The results showed that the modified group performed a better antimicrobial activity compared to the control group, the addition of 3% of the nanofiller showed a significant reduction in the mean value of growth of both C. albicans, S. aureus, and the biofilm mixture (P < 0.05) before and after the storage period. In conclusion, the addition of 3% by weight of MgONPs to the denture soft liner significantly suppressed the growth of C. albicans, S. aureus up to 6 months.

Downloads

Download data is not yet available.

References

Abdullah, Z. K. 2015. The Effect of Thermocycling on Some Properties of Modified Silicone Soft Denture Liner. M.Sc. Thesis. Hawler Medical University, Iraq.

Abdulwahhab, A. R. and R. K. Jassim. 2018. The effect of aloe vera extract on adherence of Candida albicans and other properties of heat cure denture soft lining material. Int. J. Med. Res. Health Sci. 7(3): 94-103.

Ahmed, A. Q. and M. M. Ali. 2018. The influence of titanium dioxide nanoparticles incorporation into soft denture lining material on Candida albicans adherence and some mechanical and physical properties. J. Pure Appl. Microbiol. 12(2): 783-791.

Avanzato, C. T., J. M. Follieri and I. A. Banerjee. 2009. Biomimetic synthesis and antibacterial characteristics of magnesium oxidegermanium dioxide nanocomposite powders. J. Compos. Mater. 43: 897-910.

Avila, M., D. M. Ojcius and O. Yilmaz. 2009. The oral microbiota: Living with a permanent guest. DNA. Cell. Biol. 28(8): 405-411.

Baygar, T., A. Ugur, N. Sarac, U. Balci and G. Ergun. 2018. Functional denture soft liner with antimicrobial and antibiofilm properties. J. Dent. Sci. 13: 213-219.

Chen, Y., L. Huang, C. Chan, C. Su, S. Chang, Y. Y. Chang, M. L. Chen, C. C. Hung, W. J. Chen, F. Y. Lin and Y. T. Lee. 2004. SARS i hospital emergency room. Emerg. Infect. Dis. 10: 782-788.

ChincholIkar, S., J. Sridevi, N. Kalavathy, S. Singh, A. Kapoor and S. Saumya. 2019. Comparative evaluation of two antifungalagents incorporated in auto polymerising denture base resin, heat polymerising denture base resin and permanent silicone soft liner-an in vitro study. J. Clin. Diagn. Res. 13(1): 49-54.

Chladek, G., A. Mertas, I. Barszczewska-Rybarek, T. Nalewajek, J. Żmudzki, W. Król and J. Łukaszczyk. 2011. Antifungal activity of denture soft lining material modified by silver nanoparticles a pilot study. Int. J. Mol. Sci. 12: 4735-4744.

Craig, R. G., J. M. Powers and J. C. Wataha. 2004. Dental Materials: Properties and Manipulation. 8th ed. Mosby, Maryland Heights, Missouri.

Dominic, R., S. Shenoy and S. Baliga. 2007. Candida biofilms in medical devices: Evolving trends. Kathmandu Univ. Med. J. 10(3): 431-436.

Emamifar, A., M. Kadivar, M. Shahedi and S. Solaimanianzad. 2011. Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control. 22: 408-413.

Garner, S. J., A. H. Nobbs, L. M. McNally and M. E. Barbour. 2015. An antifungal coating for dental silicones composed of chlorhexidine nanoparticles. J. Dent. 43: 362-372.

Haghighi, F., S. R. Mohammadi, P. Mohammadi, S. Hosseinkhani and R. Shipour. 2013. Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans biofilms. Infect. Epidemiol. Microbiol 1(1): 33-38.

Huang, L., D. Q. Li, Y. J. Lin, M. Wei, D. G. Evans and X. Duan. 2005. Controllable preparation of nano-MgO and investigation of its bactericidal properties. J. Inorg. Biochem. 99: 986-993.

Issa, M. I. and N. Abdul-Fattah. 2015. Evaluating the effect of silver nanoparticles incorporation on antifungal activity and some properties of soft denture lining material. J. Baghdad Coll. Dent. 27(2): 17-23.

Kamikawa, Y., D. Hirabayashi, T. Nagayama, J. Fujisaki, T. Hamada, R. Sakamoto, Y. Kamikawa and K. Sugihara. 2014. In vitro antifungal activity against oral Candida species using a dentur base coated with silver nanoparticles. J. Nanomater. 2014: 780410.

Kanathila, H., A. M. Bhat and P. D. Krishna. 2011. The effectiveness of magnesium oxide combined with tissue conditioners in inhibiting the growth of Candida albicans: An in vitro study. Indian J. Med. Res. 22(4): 613.

Kim, Y. M., E. Kuk, K. N. Yu, J. H. Kim, S. J. Park and H. J. Lee. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine. 3: 95-101.

Kreve, S., V. c. Oliveira, L. Bachmann, O. L. Alves and A. C. Dos Reis. 2019. Influence of AgVO3 incorporation on antimicrobial properties, hardness, roughness and adhesion of a soft denture liner. Sci. Rep. 9: 1-9.

Lipke, P. N. and R. Ovalle. 1998. Cell wall architecture in yeast: New structure and new challenges. J. Bacteriol. 180: 3735-3740.

Meran, Z. and A. S. Salem. 2020. The effect of magnesium oxide nanoparticles impregnated into silicone facial prostheses against Candida albicans and Staphylococcus epidermidis. Crescent J Med. Biol. Sci. 6(4): 466-472.

Mitchel, D. A. and L. Mitchel. 2005. Oxford Handbook of Clinical Dentistry. 4th ed. Oxford University Press, New York.

Naeini, A. N. J. Naderi. and H. Shokri. 2014 Analysis and in vitro anti- Candida antifungalactivity of Cuminum cyminum and Salvadora persica herbs extracts against pathogenic Candida strains. J. Mycol. Med. 24: 13-18.

Nam, K. Y. 2011. In vitro antimicrobial effect of the tissue conditioner containing silver nanoparticles. J. Adv. Prosthodont. 3(1): 20-24.

Nguyen, N. T. N., N. Grelling, C. L. Wetteland, R. Rosario and H. H. Liu. 2018. Antimicrobial activities and mechanisms of magnesium oxide nanoparticles (nMgO) against pathogenic bacteria, yeasts, and biofilms. Sci. Rep. 8: 16260.

Raval, H. J., N. Mahajan, Y. G. Naveen and R. Sethuraman. 2017. A three month comparative evaluation of the effect of different surface treatment agents on the surface integrity and softness of acrylic based soft liner: An in vivo study. J. Clin Diagn. Res. 11(9): 88-91.

Robinson, D. A. and M. G. Conzemius. 2012. The in vitro Antimicrobial Properties of Nano-magnesium Oxide (nMgO). Poster No. 1915 ORS Annual Meeting.

Robinson, D. A., R. W. Griffith, D. Shechtman, R. B. Evans an M. G. Conzemius. 2010. In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Acta Biomater. 6: 1869-

Saravanan, M., A. Kumar, T. V. Padmanabhan and F. Banu. 2015. Viscoelastic properties and antimicrobial effects of soft liners with silver zeolite in complete dental prosthesis wearers: An in vivo study. Int. J. Prosthodont. 28(3): 265-269.

Singh, B., M. Bembalagi, J. M. Nagmoti, R. Patil and A. Patil. 2018 Comparison of effectiveness of silver zeolite as an antimicrobia agent in acrylic and silicone soft liners in complete denture patients: An in vivo study. Indian J. Health Sci. Biomed. Res. 11(2): 170-174.

Stencel, E. J., W. Pakieła, A. Mertas, E. Bobela, J. Kasperski an G. Chladek. 2018. Effect of silver-emitting filler on antimicrobial and mechanical properties of soft denture lining material Materials (Basel). 11(2): 318.

The glossary of prosthodontic terms: 2017. Ninth Edition. J. Prosthet. Dent. 117(5S): 30.

Urban, V. M., T. F. Lima, M. G. Bueno, M. Giannini, J. N. Arioli Filho, A. L. de Almeida and K. H. Neppelenbroek. 2015. Effect of the addition of antimicrobial agents on Shore A hardness and roughness of soft lining materials. J. Prosthodont. 24: 207-214.

Valentini, F., M. S. Luz, N. Boscato and T. P. Cenci. 2017. Surface roughness changes in denture liners in denture stomatitis patients. Int. J. Prosthodont. 30: 561-564.

Wetteland, C. L., N. Y. T. Nguyen and H. Liu. 2016. Concentrationdependent behaviors of bone marrow derived mesenchymal stem cells and infectious bacteria toward magnesium oxide nanoparticles. Acta Biomater. 35: 341-356.

Yamamoto, O., J. Sawai and T. Sasamoto. 2000. Change in antibacterial characteristics with doping amount of ZnO in MgOZnO solid solution. Int. J. Inorg. Mater. 2: 451-454.

Yamamoto, O., T. Ohira, K. Alvarez and M. Fukuda. 2010. Antibacterial characteristics of CaCO3-MgO composites. Mater. Sci. Eng. 173: 208-212.

Yanagisawa, Y. and R. Huzimura. 1981. Interaction of oxygen molecules with surface centers of UV-irradiated MgO. J. Phys. Soc. Jpn. 50: 209-216.

Zarb, G. A., C. L. Bolender, S. E. Eckert, R. F. Jacob, A. H. Fenton and R. Mericske-Stern. 2013. Prosthodontic Treatment for Edentulous Patients. 13th ed. Mosby, St Louis.

Zayed, S. M., A. M. Alshimy and A. F. Fahmy. 2014. Effect of surface treated silicon dioxide nanoparticles on some mechanica properties of maxillofacial silicone elastomer. Int. J. Biomater. 2014: 750398.

Published

2020-12-30

How to Cite

Abdel-Rahman, H. K., & Salem Al-Sammaraie, S. A. (2020). Effect of Adding Magnesium Oxide Nanoparticles on the Antimicrobial Activity of a Denture Soft Liner. Polytechnic Journal, 10(2), 132-137. https://doi.org/10.25156/ptj.v10n2y2020.pp132-137

Issue

Section

Research Articles