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Abstract—The focus of this paper is fitting the appropriation 

of two regression models of discrete count data, Poisson and 

Negative binomial regression models. The question is which one 

of these two models is the best choice for predicting the number 

of (EIA pax aircraft movement from Erbil international Airport) 

during specific period of time from (2015-2021). To model count 

data, Poisson regression has been widely used. It is frequently 

criticized, nevertheless, for the strong requirement of 

equidispersion in Poisson regression, which entails equality 

between the variance and mean of the dependent variable. Count 

data frequently displays excess zeroes and over-dispersion in 

many applications. While Negative binomial regression can 

model over-dispersed count data. There are instances of both 

overdispersion and underdispersion. One technique that can deal 

with overdispersion and underdispersion is Generalized Poisson 

regression (GPR). The data set is fitted to the specific models by a 

method called Maximum Likelihood estimation. This means that 

the unknown coefficients are estimated such as the likelihood of 

getting the given data is as large as possible. The dependent 

variable for the real data was the number of EIA pax aircraft 

movement weekly with the 13 independent variables. Four 

criterions used to check over dispersion and goodness of fit like 

Pearson 𝝌𝟐statistic, Deviance, AIC and BIC as test statistic; these 

are the common ways of comparing likelihoods between different 

models with respect to the number of estimated parameters.  

Empirical results supported the Negative Binomial Regression 

Model fitted data set very well depending on the values of these 

criterions, as their smaller values indicate the best model. 

modeled dataset by available statistical software like SPSS V25 

and Stata V16 and Stratigraphic V15.  

Keywords— Methodology, Poisson Regression, Negative 

Binomial Regression, Model selection 

I. INTRODUCTION 

The most popular technique to model the relationship 

between dependent and independent variables is regression 

modeling. Different regression models are applied in real-

world situations depending on whether the dependent variable 

is continuous or discrete. The dependent variable is frequently 

count data made up of integers that cannot have a negative 

value. The number of accidents involving natural gas 

pipelines, the number of airline delays, the number of party 

switches among deputies during an election year, the number 

of strikes per year in a nation, the number of accidents 

involving motor vehicles or the workplace that occur in a 

given day are all examples of count data. When this occurs, 

using standard regression analysis will result in skewed 

projected coefficients (See King, 1988). 

The Poisson regression model is the most widely used 

regression model for count data. The dependent variable count 

data, which is used in the Poisson regression model, is derived 

from the Poisson distribution. Poisson regression models work 

well for data with an equal spread. The expected value and 

variance of the dependent variable has to be equal in order for 

there to be equal dispersion. Rarely is this the case. In several 

disciplines, including marketing, public health, and biomedical 

science, count data is particularly prevalent. Count data are 

typically used to model the number of occurrences of an event 

over a fixed time period. Regarding regression models, the 

classic linear regression model is unsuitable for the analysis of 

count data, since it violates the assumption of normality. Thus, 

generalized linear models are used to analyze data when 

linearity and normality assumptions are no longer valid. 

Nelder and Wedderburn's (1972) first description of the 

Generalized Linear (GLM) has been further expanded upon 

and clarified by (See McCullagh and Nelder, 1989). It 

provides for alternative models of the mean than the classic 

linear regression, which models the mean as a linear function 

of the covariance. All GLMs have three components: a 

random component that determines the output variable's 

distribution; a systematic component that describes the 

covariates in linear form; and a link function that links the 

random component and the systematic components. The 

classic OLS regression is appropriate if the output variable's 

distribution is normal. Other distributions, such as binomial 

distributions, Poisson distributions, Negative Binomial 

distributions, etc., can be used in addition to the normal 

distribution (See Jiang, 2018). 

To assess count data, Poisson regression and Negative 

binomial regression are widely employed. It is suitable for 

studying rate data as well. In extended linear models, the 

Poisson regression model belongs to a class of models (GLM). 
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It uses natural log as the link function and models the expected 

value of dependent variable. The model's natural log makes 

sure that the dependent variable's predicted values can never 

be negative. In Poisson regression, it is assumed that the 

dependent variable will follow a Poisson distribution. The 

Poisson distribution calls for the mean to be equal to the 

variance. There is frequently over-dispersion in count data. 

Over-dispersion occurs when the variance is significantly 

larger than the mean. The data is referred regarded as being 

over-dispersed when this occurs. The over-dispersion must be 

accounted by the analysis methods appropriate to the data. 

Poisson regression is insufficient for the analysis of over-

dispersed data. Negative binomial regression is hence more 

suitable for over-dispersed data to overcome over-dispersion. 

This is due to the fact that negative binomial regression 

inherently has a higher variance than mean, which allows for 

over-dispersion. (See Brännäs and Johansson, 1994.) 

 

 

 

2. Methodology and Methods 

2.1 Generalized Linear Models (GLM) 

 

Flexible expansions of ordinary general linear regression, 

generalized linear models (GLM) allow for the inclusion of 

dependent variable with distribution other than the normal 

distribution. The flexibility of a GLM is desired because the 

distribution is originally unknown and the purchasing behavior 

does not always follow a normal distribution. A GLM allows a 

link function to be related to the dependent variable, and 

furthermore, the variance of each measurement can be a 

function of its predicted value (See Olsson, 2002). In 1972, 

GLMs were first made available. GLMs provide a combined 

method for analyzing these many regression models rather 

than requiring separate studies for each one. Poisson 

regression models, linear regression models, zero-inflated 

regression models, logistic regression models, negative 

binomial regression models, the Poisson Hurdle model, and 

many other models are included in the Generalized linear 

models. These models use a common method for estimating 

parameters, and is one of their unique characteristics (See 

Adeti, 2016).  

Additionally, it enables the linear model of several variables 

to be connected to a dependent variable using any number of 

different link functions. According to (Zurr et al., 2009), there 

are three processes involved in creating a GLM: a) selecting a 

dependent variable's distribution (Y), b) defining covariates 

(X), and c) selecting a link function between the dependent 

variable's mean (E(Y)) and a linear combination of the 

covariates (𝛽𝑋). consider a general linear model describes the 

observation (𝑖 = 1,2, … , 𝑛) of Y (the dependent or response 

variable) is as a linear function of (𝑝 − 1) independent 

variables (𝑥1, 𝑥2, … , 𝑥𝑝−1) as follows: 

yi = βo + β1x1 + β2x2 +⋯+ βkxk + εi       … (1) 
can be written in matrix form in the following way: 

𝑌 = 𝑋𝛽 + 𝜀          … (2) 

𝐸(𝑌) = 𝑋�̂�    

Where (Y) is a vector that consists of the observations of 

the dependent variable 

𝑌 = (

𝑦1
𝑦1.
.
𝑦𝑛

) 

And X is a matrix with dimension (𝑛 × 𝑝), where 𝑝 = 𝑘 +

1 

  , 𝑋 =

(

 
 

1 𝑥11 …… ..  𝑥1𝑘
1 𝑥21 ………  𝑥2𝑘
.  .                     .  . .                   .
. .                     .
1 𝑥𝑛1                 𝑥𝑛𝑘)

 
 
,   𝛽 =

(

 
 

𝛽0
𝛽1.
.
𝛽𝑘)

 
 
   , 𝑎𝑛𝑑 𝜀

= (

𝜀1
𝜀2.
.
𝜀𝑛

)  

From 𝑋 the first column corresponds to the intercepts and 

the other columns contain the values of the independent 

variables (See Zurr et al., 2009). 

β is a vector β = (βo, β1, β2, . . , βp)
′ containing the 

parameters p which are to be estimated and finally, ε is the 

residual vector ε = (εo, ε1, ε2, . . , εp)
′ 

2.2 Poisson Regression Model 

One of the distributions that is most frequently used in 

statistical applications is the Poisson distribution. Because the 

distribution's mean and variance are equal, it does have its 

limitations. In many situations this assumption is not realistic. 

To deal with this problem, researchers have used several 

Poisson definitions. Usually, to adjust for over-dispersion or 

under-dispersion, a mixing distribution is included or the 

Poisson is estimated with additional parameters. The Poisson 

regression model attempts to at modeling a counting variable 

Y, which counts how frequently a specific event occurs over a 

specified time period. 

Poisson regression is frequently applied to count data. 

Count data is defined as "the number of occurrences of a 

behavior in a specific period of time" by Coxe et al (2009). 

Integers must only be non-negative in count data (See 

Karazsia et al, 2008). Hence A generalized linear regression 

model with a logarithmic link function is called Poisson 

regression. The phrase "models expanding the ordinary 

regression model to encompass non-normal dependent 

distributions and modeling function of the mean" was used by 

Agresti (2013) to describe generalized linear models (GLM). 

Three main assumptions govern Poisson regression as a 

generalized linear model (See Durrant, 2016 and Pesonen, 

2018). 

Inside the generalized family of linear models, the Poisson 

regression method is found (Hoffman, 2004; Agresti, 1996). In 

two ways, these models broaden the use of ordinary linear 

regression. In order to ensure that the dependent variable has 

conditional distributions that are not normal, they first define 
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them as linear functions of the explanatory variables, which 

specify transformations of the conditional means rather than 

the mean itself. The dependent variable's distribution can be 

skewed under various circumstances. The frequencies peak 

their highest point at the lowest number and rapidly decrease 

as they ascend. The Poisson distribution from the discrete 

distribution family can be expressed to represent variables 

with such asymmetric right-slope distributions (Moksony and 

Hegedus, 2014). Let 𝑥𝑖 and 𝑥𝑖 represent observations from a 

set of data. The numbers 𝑥𝑖 and 𝑦𝑖  in this instance represent a 

vector of arguments and dependent variables, respectively. 

The dependent variable 𝑦𝑖  is assumed to exhibit the Poisson 

distribution in a Poisson regression study. Let 𝑥𝑖 and 𝑦𝑖 be 

observations from a data set. Here, the numbers 𝑥𝑖 and 𝑦𝑖 are 

respectively a vector of independent and dependent variables. 

Poisson regression analysis assumes that the 𝑦𝑖 shows the 

Poisson distribution. The probability density function for the 

Poisson distribution with the parameter 𝜆𝑖 is given in the 

following formula; 

𝑓(𝑦𝑖|𝑥𝑖) =
𝜆𝑖
𝑦𝑖𝑒−𝜆𝑖

𝑦𝑖!
      ,     𝑦𝑖 = 0, 1, 2, …             … (3) 

The number of events occurring is denoted by the symbol 

𝑦𝑖, and the ratio of events occurring per unit of time is denoted 

by the symbol 𝜆𝑖. In other words, 𝜆𝑖 provide the distribution's 

average. The probability here changes as a function of 𝜆𝑖. The 

Poisson probability distribution has a right-angled skew. 

However, when 𝜆𝑖 increase, the distribution gets closer to the 

normal distribution. The Poisson regression model's equal 

mean and variance is its most important feature. Because 

distortions are apparent in the assumption that the conditional 

expected value is equal to the variance and the assumption is 

not met, over- or under-dispersed data sets cannot be 

described by the Poisson distribution. In this case, updating 

the data set or starting the analysis with different methods may 

be a solution. The expected value and variance of 𝑦𝑖 are given 

in Equation (4). 

𝜆𝑖 = 𝐸(𝑦𝑖|𝑥𝑖) = 𝑉𝑎𝑟(𝑦𝑖|𝑥𝑖)          … (4) 
 

The link function illustrating the relationship between the 

expected value and the independent variables must have the 

form specified in Equation (5) in order to ensure that the 

expected value of 𝑦𝑖 does not take negative values (See 

Cameron and Trivedi, 1998). 

log (𝜆𝑖) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2… . , 𝛽𝑚𝑥𝑚          … (5) 
In this equation, 𝜆𝑖 is an exponential function of the 

arguments. 𝜆𝑖 is the same as given in Equation below: 

 𝜆𝑖 = exp(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2… . , 𝛽𝑚𝑥𝑚) = 𝑒
𝑥𝑖
′𝛽          … (6) 

Where 𝛽0, 𝛽1,…,𝑚 represent the unknown parameters.  

There are many methods to calculating 𝛽 estimators in the 

Poisson regression analysis based on the distribution of the 

dependent variable 𝑦𝑖. Maximum likelihood (MLE) method, 

artificial maximum likelihood (PMLE) method, and 

generalized linear models (GLM) are the most commonly 

applied and well-known of these techniques. The most used 

method for regression models is (Newton Raphson iteration) 

approach is typically employed in the likelihood method 

(MLE). The Poisson regression model's log likelihood 

function is as follows given an observation set: 

𝐿(𝛽|(𝑦, 𝑥)) =∑𝑃(𝑦𝑖|𝜆𝑖)

𝑛

𝑖=1

=∏
𝜆𝑖
𝑦𝑖𝑒−𝜆𝑖

𝑦𝑖!

𝑛

𝑖=1

       … . (7) 

When the logarithm of this function is taken, Equation 

below is obtained. 

𝑙𝑛𝐿(𝛽) =∑(𝑦𝑖 ln(𝜆𝑖) − 𝜆𝑖 − 𝑙𝑛𝑦𝑖!)

𝑛

𝑖=1

        … (8) 

Accordingly, the Poisson MLE of ( ) value is calculated 

from the expression in Equation 9 (See Durmuş and Güneri, 

2020). 

∑(𝑦𝑖 − 𝜆𝑖)𝑥𝑖

𝑛

𝑖=1

= 0            … (9) 

 

2.3 Generalized Poisson Regression model 

 

the generalized Poisson distribution presented by Consul 

and Jain (1973), Famoye in (1993) derived the generalized 

Poisson regression (GPR) model. These distributions can 

handle under-distributed, over-distributed, and evenly-

distributed count data. The Poisson regression model's equally 

scattered nature is its standout characteristic (See Famoye, 

1993). However, in applications, the data sets typically have a 

variation that is above the average. therefore, they show 

overdispersion. The Poisson model's prediction of the number 

of zero values and the presence of unobserved heterogeneity 

together led to the over dispersion of data (See Kibar, 2008). 

The coefficient estimate is untouched by over dispersion in the 

model; however, the estimate is affected by the standard error. 

As a result, the model's dependability is diminished (See Al-

Ghirbal and Al-Ghamdi, 2006). When there is over dispersion 

in the data set, the generalized Poisson distribution is as 

follows (Equation 10) (See Pamukçu et al., 2014); 

𝑃(𝑦𝑖|𝜆𝑖 , 𝛼) =
𝜆𝑖(𝜆𝑖 + 𝛼𝑦𝑖)

𝑦𝑖−1𝑒−𝜆𝑖−𝛼𝑦𝑖

𝑦𝑖!
                𝑦𝑖

= 0,1,2, …           … (10) 

Where 𝜆𝑖 > 0 and max(−1,
−𝜆𝑖

4
) < 𝛼 < 1 . Also, the mean 

and variance of the generalized Poisson distribution are 

equations (11 and 12):  

𝜇𝑖 = 𝐸(𝑦𝑖) =
𝜆𝑖

1 − 𝛼
             … (11) 

𝑉𝑎𝑟(𝑦𝑖) =
𝜆𝑖

1 − 𝛼3
=

𝜆𝑖
1 − 𝛼2

𝐸(𝑦𝑖) = ∅𝐸(𝑦𝑖)          … (12) 

The term ∅ =
𝜆𝑖

1−𝛼2
 in particular acts as a dispersion factor. 

It is obvious that the generalized Poisson distribution for (𝛼 =
0)  is the general Poisson distribution with the parameter 𝜆𝑖. 
Under dispersion occurs when  (𝛼 < 0)  , whereas 

overdispersion occurs when (𝛼 > 0) (See Yang et al., 2009). 

The standard error will be below the estimate and the 

regression parameters will be interpreted incorrectly when 

there is over dispersion. With the use of a log-link function, 

like in Equation (13), the independent variables are combined 

in the regression model based on the GP distribution. 
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𝜆𝑖
1 − 𝛼

= 𝜇𝑖 = 𝐸(𝑦𝑖|𝑥𝑖) = 𝑒
𝑥𝑖
′𝛽           … (13) 

 

2.4 Negative Binomial Regression Model 

 

According to (Xia, et al., 2012), the Negative binomial 

(NB) regression model is the most well-known alternative to 

Poisson regression, handles overdispersion by explicitly 

modeling the associated events through a latent variable. They 

further stated that the NB expands the Poisson regression 

model by including the fact that the mean 𝜇𝑖  of 𝑌𝑖 is now 

controlled by a heterogeneity component 𝜖𝑖 that is 

independent of 𝑋𝑖 in addition to 𝑋𝑖 (See Adeti, 2016). 

Negative binomial distribution is another model for count data 

and is one of the most often distribution that used as an 

alternative to Poisson distribution (See Zuur et al., 2009). 

Assume that y is a random variable and its probability mass 

function (p.m.f) is as follows (See Hilbe, 2011).The density 

function for the Negative Binomial model is as follows if it is 

assumed that exp (𝜖𝑖  ) has a Gamma distribution (𝜃, 𝜃): 

𝑃(𝑌𝑖 = 𝑦|𝑋𝑖) =
𝛤(𝑦 + 𝜃)

𝑦! 𝛤(𝜃)
(

𝜃

𝜃 + 𝜇𝑖
)
𝜃

(
𝜇𝑖

𝜃 + 𝜇𝑖
)
𝑦

       𝑦

= 0,1,2, …       … . (14) 

Where 𝜃 =
1

𝛼
  which is the dispersion parameter 

𝐸(𝑌𝑖 = 𝑦|𝑋𝑖) = 𝜇𝑖 = 𝐸(exp(𝑋𝑖
𝑇𝛽 + 𝜖𝑖))

= 𝐸(exp(𝑋𝑖
𝑇𝛽) exp(𝜖𝑖)) = exp (𝑋𝑖

𝑇𝛽) 

And that 𝐸(exp(𝜖𝑖)) = 1 hence 𝐸(exp(𝑋𝑖
𝑇𝛽 + 𝜖𝑖)) =

𝐸(exp(𝑋𝑖
𝑇𝛽)) thus, the expected value  𝜇𝑖 does not change 

even if we assume that a Negative Binomial distribution or a 

Poisson distribution. Since the dispersion parameter > 0 , 

under the Negative Binomial distribution. 𝑉𝑎𝑟(𝑌𝑖 = 𝑦|𝑋𝑖) =

𝜇𝑖 (1 +
𝜇𝑖

𝜃
)  > 𝜇𝑖 , Implying that  𝑉𝑎𝑟(𝑌𝑖 = 𝑦|𝑋𝑖)/

𝐸(𝑌𝑖 = 𝑦|𝑋𝑖) = 1 +
𝜇𝑖

𝜃
  . This implies that, the variance of the 

NB is greater than its mean, hence addressing the issue of 

overdispersion. 

The NB distribution's dispersion parameter, represented by 

the symbol 𝜃, which indicates the degree of over dispersion. In 

the event that 𝜃 = 0, the Negative Binomial regression model 

also transforms into a Poisson regression. In their 

investigations in a variety of domains, several researchers 

have thought about using both Poisson and Negative Binomial 

models (See, for example, Miaou, 1994; Kibria, 2006; and 

Chipeta, et al., 2014), which may be calculated from the 

probability density function as: 

𝑃(𝑌𝑖 = 𝑦|𝑋𝑖) =
𝛤(𝑦 + 𝜃)

𝑦! 𝛤(𝜃)
(

𝜃

𝜇𝑖 + 𝜃
)
𝜃

(
𝜇𝑖

𝜇𝑖 + 𝜃
)
𝑦

=
𝛤(𝑦 + 𝑟)𝑝𝑟(1 − 𝑝)𝑦

𝛤(𝑦 + 1)𝛤(𝑟)
        … (15) 

The likelihood function for the negative binomial model is: 

𝐿 =∏𝑃

𝑁

𝑖=1

(𝑌𝑖 = 𝑦|𝑋𝑖)

=∏(
𝛤(𝑦 + 𝑟)𝑝𝑟(1 − 𝑝)𝑦

𝛤(𝑦 + 1)𝛤(𝑟)
 )

𝑁

𝑖=1

       … (16) 

And the log-likelihood is 

ℓ =∑𝑙𝑛

𝑁

𝑖=1

(
𝛤(𝑦 + 𝑟)𝑝𝑟(1 − 𝑝)𝑦

𝛤(𝑦 + 1)𝛤(𝑟)
)        … (17) 

=∑𝑙𝑛

𝑁

𝑖=1

(𝛤(𝑦 + 𝑟)) +∑ln (𝑝𝑟)

𝑁

𝑖=1

+∑ln((1 − 𝑝)𝑦)

𝑁

𝑖=1

−∑ln(𝛤(𝑦 + 1)) −∑ln (𝛤(𝑟))

𝑁𝑁

𝑖=1

𝑁

𝑖=1

 … (18) 

=∑𝑙𝑛

𝑁

𝑖=1

(𝛤(𝑦 + 𝑟)) + 𝑁𝑟𝑙𝑛(𝑝) + 𝑦𝑙𝑛(1 − 𝑝)

− ln(𝛤(𝑦 + 1)) − 𝑁𝑙𝑛(𝛤(𝑟))      … (19) 

To find the maximum likelihood estimates (MLE) of (𝑟) 
and (𝑝) , we take derivatives of (ℓ) with respect to (𝑟) and (𝑝) 
and equate them to zero. 

𝑑ℓ

𝑑𝑝
=
𝑁𝑟

𝑝
+∑(

−𝑦

1 − 𝑝
) = 0                … (20)

𝑁

𝑖=1

 

To get the maximum likelihood estimate of (𝑝) 

𝑝 =
𝑁𝑟

𝑁𝑟 + ∑ 𝑦 𝑁
𝑖=1

        … (21) 

Differentiating ℓ in relation to (𝑟) and substituting the 

maximum likelihood estimate of  (𝑝) to eliminate (𝑝) from 

the equation, 

𝑑ℓ

𝑑𝑟
= 𝑁𝑙𝑛(𝑝) − 𝑁𝜓(𝑟) +∑𝜓(𝑦 + 𝑟)

𝑁

𝑖=1

          … (22) 

𝑑ℓ

𝑑𝑟
= 𝑁𝑙𝑛 (

𝑁𝑟

𝑁𝑟 + ∑ 𝑦𝑁
𝑖=1

) − 𝑁𝜓(𝑟) +∑𝜓(𝑦 + 𝑟)

𝑁

𝑖=1

= 0          … (23) 

The equation 
𝑑ℓ

𝑑𝑟
 has no closed-form solution so the root has 

to be found with numerical methods. 

3. Testing the Goodness of Fit of the Model (Model Selection) 

 

The goodness of fit of the regression line modified to a data 

set in linear regression models refers to how well the 

regression line adapted with the data set. The distribution of 

the observations around the model's form should be assessed 

after the parameters have been estimated since the better the 

model fits the data, the closer the observations are to the 

projected model. In other words, it would be preferable to alter 

the explanatory variables to account for the change in (𝑦𝑖) 
(Koutsoyiannis, 1989). the generally used criteria for testing 

the goodness of fit of any model include the Akaike 

Information Criterion (AIC), the Bayes Information Criterion 

(BIC), the Pearson statistic 𝜒2, the Deviation statistic, and the 

pseudo R2measurement (see Durmus and Guneri, 2020). 

 

3.1 Pearson Statistics 

 

One of the fundamental standards of goodness of fit is 
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Pearson's statistic, which is usually chosen to establish if the 

series is overspread. Equation following below provides 

Pearson statistics for a model with 𝜆𝑖 mean and 𝜔𝑖 variance. 

𝜒2 =∑
(𝑦𝑖 − �̂�𝑖)

2

�̂�𝑖

𝑛

𝑖=1

        … (24) 

The value of this test is used to assess whether the 

dispersion of the series is over. It will be 𝜔𝑖=𝜆𝑖 as a natural 

extension of the Poisson distribution when Pearson statistic is 

used for Poisson regression, and the formula will take the form 

of Equation below: 

𝜒𝑝
2 =∑

(𝑦𝑖 − �̂�𝑖)
2

�̂�𝑖

𝑛

𝑖=1

        … (25) 

 

it indicates that the data are not suitable for the model and 

the presence of over dispersion status, If the ratio of calculated 

𝜒𝑝
2 to the degree of freedom is more than 1. The calculated 𝜒𝑝

2 

value will likewise be compared with the value (𝑛 − 𝑘).  If the 

series 𝜒𝑝
2 > (𝑛 − 𝑘) is over dispersion, If the series 𝜒𝑝

2 < (𝑛 −

𝑘)  is said to be under dispersion (See Deniz, 2005). 

 

3.2 Deviation Statistics  

 

deviance statistics is one of the techniques used to measure 

goodness of fit, also called ‘G square statistic’. Deviation 

statistics are expressed by Equation 26. 

𝐺2 = 2∑𝑦𝑖𝑙𝑛 (
𝑦𝑖
𝜆𝑖
)

𝑛

𝑖=1

        … (26) 

The convergence of this statistical value to zero indicates 

that the model fit has increased. If the statistical value is equal 

to (0), ‘model fit is perfect (See Dumus and Guneri, 2020).  

 

3.3 Akaike Information Criterion (AIC) 

 

When comparing statistical models fitted by maximum 

likelihood (ML) to the same data, usually for non-nested 

models, to statistical models fitted by other methods, the 

Akaike Information Criterion (AIC) is used to measure the 

relative superiority of each model for the given data set. The 

statistic penalizes for the amount of predictors employed in the 

model and takes into account model parsimony, as a result: 

𝐴𝐼𝐶 = −2𝐿 + 2𝑘        … (27) 
Clearly, the first term is a penalty for the number of 

parameters, while the second term is a deviation. The most 

effective statistical model is the one with the lowest AIC 

value. 

The comparative superiority of statistical models for a given 

set of data is assessed using the Akaike information criterion 

(AIC). Hirotugu Akaike developed and published the AIC in 

1973. As according Mazerolle (2004), the AIC gives an 

impartial technique for determining which of several 

competing models is the most frugal. AIC values for given 

data are meaningless, but when they are compared to the AIC 

values of competing models, they take on meaning. The model 

with the smallest value of AIC among competing models is 

the best (ideal) model for the given data set (Mazerolle, 2004). 

According to Mazerolle (2004), the AIC is used to choose a 

model that fits the data well but has a small number of 

parameters; as a result, the AIC penalizes the addition of 

parameters (See Adeti, 2016). 

 

3.4 Bayesian Information Criterion (BIC) 

 

Another estimator evaluating model fit for a given data 

among different types of non-nested model is the Bayesian 

information criterion (BIC), and its formula is as follows: 

 

𝐵𝐼𝐶 = −2𝑙𝑜𝑔𝐿 + 𝑘𝑙𝑜𝑔 𝑛        … (28) 
Where: 

𝐿: The model's maximum likelihood function. 

𝑘: Number of model parameters. 

𝑛: Number of observations (sample size). 

The best model to fit the data is the one with the minimum 

value of BIC (See Cameron and Trivedi, 2013). 

4. The Likelihood Ratio Test 

A statistical technique called the likelihood ratio test (LR) is 

used to compare two "nested models." and determine which 

model fits the data better, its formula is given as (See Hilbe, 

2011 and Zurr et al., 2009) 

𝐿𝑅 = −2𝑙𝑜𝑔 (
𝐿1
𝐿2
)       … (29) 

𝐿1: The likelihood of the first model. 
        𝐿2: The likelihood of the second model. 
 

5. Data Collection 

The sample dataset of this study was limited on the Erbil 

International Airport and the observations were made of the 

number of EIA Pax aircraft Movement as a Y dependent 

(response) variable in the Airport transfer process in the 

specific period of time. The sample consisted of 336 weeks 

which have been collected during (7) years period; beginning 

from 1th January 2015 through to 31th December 2021 of all 

people that they had taken Erbil International Airport as a way 

to move to other countries. A set of variables were taken 

weekly, where (13) of them represents independent 

(explanatory) variables (Total EIA passenger, Male arrival,  

Male  departures, Female arrival, Female departures, total 

Domestic Passengers, total Domestic EIA Movement, total 

international Passengers, total international EIA Movement, 

infant Passengers <2 (less than two years), adult Passengers > 

2 (older than two years), business Class Passengers, economy 

Class Passengers} and the variable under study is dependent 

variable which is the number of EIA Pax aircraft Movement 

weekly over a period of  seven years was measured. 

 

6. Application, Results and Discussion 

 

The number of occurrences is assumed to be independently 

identically distributed with a discrete probability distribution 

when evaluating count data variable. The Poisson and 

Negative Binomial distributions are the most typical 

probability distributions used to describe count data. The data 
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was also analyzed using generalized linear models using 

Poisson regression and Negative binomial regression model. 

Estimating log functions of a count variable is the objective of 

the Poisson regression model. The Poisson distribution (rather 

than the Normal distribution) is preferable since count 

variables are all positive integers and for rare events, as the 

Poisson mean > 0. Analysts typically look for alternatives to 

the Poisson model, such as the negative binomial model, 

because observed data will almost always display pronounced 

overdispersion. The equidispersion restriction of the Poisson 

model is relaxed through the use of a functional form called 

the negative binomial model. 

Figure bellow shows number of flights distributed monthly 

for seven years ago in Erbil airport; different color lines 

plotted against time. Where the Y-axis represents EIA pax 

aircraft movement against the X- axis which is the time. Most 

of the lines of this study increased over time, some of trends 

somewhere have the similarity over time, this similarity 

indicates that many of the variables had the same behaviors or 

we can say semi similarity but generally have the same 

direction, this because of the similarity of correlation between 

independent variables look at the correlation matrix in index 

table (). There is only two lines have different behavior look at 

the (2017and 2020), this express that the air movement 

internationally demand for travelling did not show highly 

significant improvement as a new epicenter of COVID-19 

emerged in several countries, leading to a re-imposition of 

travel restrictions in (2020). The struggle against ISIS, which 

began in 2017, has had a significant impact (affected) on 

Kurds' daily lives, particularly through its effects on the KRG 

economy, which leaded to stopped travelling on Erbil airport 

during period of time. as we saw in line of 2017. 

 
 

Figure 1: Graphical Representation of EIA pax aircraft 

movement monthly 

 
Figure 2: Graphical Representation of EIA pax aircraft 

movement Regionally 

 

Figure (2) and table (1) show clearly the effect of COVID 

19 on travelling regionally as we see in (2020) raghly decrease 

totally from the number of Air pax movement Compared to 

other years, because the Air movement internationally demand 

for travelling did not show highly significant improvement 

when this disease emerged in several countries.   

 

 

 

 

 

  

Tab

le 1: 

EIA 

pax 

aircraf

t 

move

ment 

Regio

nally  

Y 
Africa 

Movement 

Europe 

Movement 

Middle 

East 

Movement 

Total 

Movement 

2015 335 1953 16576 18864 

2016 475 1619 16986 19080 

2017 430 1402 13462 15294 

2018 400 1720 13442 15562 

2019 560 1988 17012 19560 

2020 281 588 5184 6053 

2021 472 1459 12359 14290 

     

Total  2953 10729 95021 108703 

 

Table 2: Passengers Demographic 

 Africa  Europe  
Middle 

East  
Total  

2015 21450 146961 1497290 1665701 

2016 33508 143152 1637612 1814272 

2017 32970 134776 1438785 1606531 

2018 42102 152719 1339042 1533863 

2019 54386 179956 1675443 1909785 

2020 22742 46067 437437 506246 

2021 31482 133653 1116597 1281732 

Total  238640 937284 9142206 10318130 
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 Figure 3: EIA Pax aircraft movement (Passengers Demographic)  

 

 

Figure (3) and table (2) express the number of Passengers 

demographically. Covid 19 affected on the number of 

passengers demographically, there is a great convergence with 

the number of aircraft flights movement as we mentioned 

above especially the Middle East and Europe. While Africa 

did not have the problem of this disease (COVID 19). So, the 

year (2020) was more affected by this disease, which 

expanded in many countries, as we shown in Europe and the 

Middle East. 

 

Table 3: Descriptive statistics of research variables  

Va

riable 

Defini

tion 

Me

an 

Min

imum 

Max

imum 

Varianc

e 

S.d 

𝑌 EIA 

aircraft 

Moveme

nt 

323

.23 

0 578 16045.8

80 

126.

672 

𝑋1 Total 

EIA 

passenge

r 

307

02.41 

30 550

60 

175048

988.631 

132

30.608 

𝑋2 Male 

arrival 

111

33.56 

341

6 

217

69 

157945

45.436 

397

4.235 

𝑋3 Male 

departure

s 

100

76.13 

282

3 

218

58 

171305

54.311 

413

8.907 

𝑋4 Femal

e arrival 

493

1.72 

138

1 

105

95 

360708

8.475 

189

9.234 

𝑋5 Femal

e 

departure

s 

453

5.85 

132

4 

105

68 

404402

8.264 

201

0.977 

𝑋6 Total 

Domesti

c 

Passenge

rs 

910

7.47 

0 194

26 

205729

24.053 

453

5.739 

𝑋7 Total 

Domesti

c 

Moveme

nt 

101

.79 

0 216 1966.51

3 

44.3

45 

𝑋8 Total 

internati

onal 

Passenge

216

18.85 

0 484

53 

128134

548.394 

113

19.653 

rs 

𝑋9 Total 

internati

onal 

Moveme

nt 

221

.79 

0 396 10416.0

32 

102.

059 

𝑋10 Infant 

Passenge

rs 

505

.12 

0 185

6 

87395.6

87 

295.

628 

𝑋11 Adult 

Passenge

rs 

301

87.26 

251 583

35 

185854

761.528 

136

32.856 

𝑋12 Busin

ess Class 

Passenge

rs 

112

9.45 

0 221

8 

195702.

702 

442.

383 

𝑋13 Econo

my Class 

Passenge

rs 

290

48.78 

251 550

33 

157727

609.406 

125

58.965 

 

If the variance of dependent variable is higher than the 

mean (which is typically the case), this is called 

overdispersion and requires an additional dispersion 

parameter. Table (3) gives a brief summary measure of the 

dataset; each variable has 336 valid observations (from 2015 

to 2021). The counts range of Y from a minimum value of (0) 

to a maximum value of (578) with mean (323.23). The results 

show that the variance of all variables is greater than the mean 

which means that there is over dispersion in the dataset.  

According to the standard errors of the estimates in the 

dataset, it was small and this shows that there is a high 

precision. The mean, Minimum, Maximum, Variance and 

stander deviation of the total EIA passenger was (30702.41, 

30, 55060, 175048988.631 and 13230.608) by respectively. 

While, the mean of the (Male arrival, Male departures, Female 

arrival and Female departures) were (11133.56, 10076.13, 

4931.72 and 4535.85) by respectively.  The mean, Minimum, 

Maximum, Variance and stander deviation of the total 

Domestic Passengers were (9107.47, 0 , 19426, 20572924.053 

and 4535.739) by respectively. The mean of the (Total 

Domestic Movement, Total international Passengers, Total 

international Movement, Infant Passengers, Adult Passengers, 

Business Class Passengers and Economy Class Passengers) 

were (101.79, 21618.85, 221.79, 505.12, 30187.26, 1129.45 

and 29048.78) by respectively. 
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Figure 4: the Number of EIA pax aircraft movement during 

(2015-2021) 

We got the output of response count variable that, this 

histogram does not distribute normally. Looks The figure (4) 

shows that data from (2015–2021) were used, and the 

dependent variable's Poisson distribution did not adequately 

cover the data due to the dataset's excessive dispersion and 

high variance. Therefore, the Poisson regression assumption 

that the number of cases has variance equal to the mean at 

each level of the covariates is neither violated or absent. 

Clearly shows underestimate the probability at 0 and 

overestimate the probability over 300. If we check it again, is 

it approximately negative binomial distribution? the answer is 

not, because the data set different from negative binomial and 

we know that a negative binomial distribution is not more 

appropriate for that sample dataset. 

 

6.1 Interpretation of the results of Poisson regression 

model  

 

This section's table (4) lists the regression coefficients for 

the Poisson regression model along with their standard error 

values and test statistics for the coefficients of related 

parameters (4). As can be observed, several parameters' 

maximum likelihood coefficients are statistically significant at 

5%; statistically significant coefficients indicate that the 

relevant variable has a positive or negative impact on the 

number of EIA pax aircraft movements. we illustrate the 

output of Poisson regression model in table below accordingly 

of the software used, as the data were found to be over 

dispersed, the analysis of Poisson regression model will not be 

the best results. When the coefficients are examined by the 

Wald Chi square test, it is seen that (X1 , X2 , X7 , X8 , X9 , 𝑋10 

, 𝑋12) of them are significant because their (p-values) are less 

than 5% level, with intercept too, while (X3 , X4 , X5 , X6 , X11 

, X13 ) of estimated coefficient are not significant because their 

p-values are greater than the 5% level.  

 

 

Table 4: Results of Parameter Estimates (Fitting) 

Generalized Poisson Regression Model 

Iteration 0: log 

likelihood  

-

2792.9198 

Number 

of obs.      
336 

Iteration 1: log 

likelihood  

-

2687.6075 

Optimizat

ion             
MLE 

Iteration 2: log 

likelihood  

-

2687.2785   

Pseudo 

R2             
0.7810 

Iteration 3: log 

likelihood  

-

2687.2785   

Link 

function 
Log 

Explanatory 

variables 

Coeffic

ient  

B 

Std. Error 

Hypothesis 

Test 

Wa

ld Chi-

Square 

Si

g, 

Constant 
4.2443

12 

.0444109    95.

57 

0.

000 

Total EIA 

passenger - 𝑋1 
.00001

34    

3.48e-06     3.8

5    

0.

000 

Male arrival - 𝑋2 8.95e-

06    

3.40e-06      2.6

3    

0.

009 

Male departures - 

𝑋3 
-1.31e-

06    

3.97e-06     -

0.33  

 

0.742 

Female arrival - 

𝑋4 

7.86e-

06    

8.95e-06 0.8

8    

0.

380 

Female 

departures - 𝑋5  
-

.0000167    

9.26e-06 -

1.81   

0.

071 

Total Domestic 

Passengers - 𝑋6 
-3.46e-

06    

4.76e-06     -

0.73   

0.

467 

Total Domestic 

Movement - 𝑋7 
.00234

79 

.0003975     5.9

1 

0.

000 

Total 

international 

Passengers - 𝑋8 

-

.0000205 

3.89e-06    -

5.28    

0.

000 

Total 

international 

Movement - 𝑋9 

.00424

03 

.0002823     15.

02  

0.

000 

Infant Passengers 

- 𝑋10 
-

.0001986    

.0000579 -

3.43 

0.

001 

Adult Passengers 

- 𝑋11 
1.73e-

06    

1.88e-07      0.9

2 

0.

355 

Business Class 

Passengers - 𝑋12 
.00018

55 

.0000467 3.9

7 

0.

000 

Economy Class 

Passengers - 𝑋13 
3.31e-

06    

3.91e-06      0.8

5 

0.

397 

 

Count data usually expressed the variance greater than 

mean. Hence, we shall check the value of variance and mean 

after fitting Poisson regression Count data 'model. Therefore, 

the over-dispersion must be check it as shown below: 

𝐻0: 𝑀𝑒𝑎𝑛 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒    𝐻1: 𝑀𝑒𝑎𝑛 < 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

 

 

 

 

 

 

Table 5: Omnibus test of Model Effects for Generalized 

Poisson Regression Model 

Likelihood Ratio Chi-Square DF Sig. 

19172.174 13 0.000 

 

The Omnibus Test from table (5) shows the significance of 
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your overall model and is reported with Chi Square (𝜒2), 

Under the hypothesis that the current model is acceptable for 

the combinations of independent variables, all measures have 

approximately Chi-Square distributions. It reflects the 

likelihood ratio test result for a model's overall fit equal to 

(19172.174) and (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = < 0.05), it means significant. 

The significance of  𝜒2statistics implies the existence of over-

dispersion. Therefore, in the next section, we apply Negative 

Binomial model to handle the issue of over-dispersion. 

 

6.2 Interpretation of the results of Negative Binomial 

Regression Mode 

The estimated parameters of Negative Binomial regression 

model are given in table (6). According of the results of the 

Wald Chi square test, it shows that (X1 , X2 , 𝑋5 , X7 ,  X8 , X9 

, 𝑋10 , 𝑋12) estimated coefficient are significant because their 

(p-values) are less than 5% level, with intercept too, while 

(X3 , X4 , X6 , X11 , X13 ) of estimated coefficient are not 

significant because their p-values are greater than the 5% 

level. 

 

 

Table 6: The Results of Parameter Estimates (Fitting) of 

Negative Binomial Regression Model 

Iteration 

0: log 

likelihood  

-

1999.9838 

Number 

of obs.      
336 

Iteration 

2: log 

likelihood  

-

1945.1496 

Optimizat

ion 
MLE 

Iteration 

3: log 

likelihood  

-

1944.4893 
Pseudo 

R2             
0.1189 

Iteration 

4: log 

likelihood  

-

1944.4893 

Explanat

ory 

variables 

Coeffic

ient  

B 

Std. Error 

Hypothesis 

Test 

Wa

ld 

Chi-

Square 

Si

g, 

Constant 
3.8370

38 

.0523234  73.

33    

0.

000 

Total 

EIA 

passenger - 

𝑋1 

.00001

63    

5.83e-06      2.8

0    

0.

005 

Male 

arrival - 𝑋2 
.00001

79 

5.57e-06 3.2

1 

0.

001 

Male 

departures - 

𝑋3 

-7.87e-

06    

6.56e-06 -

1.20    

0.

230 

Female 

arrival - 𝑋4 
8.31e-

06 

.0000142 0.5

8 

0.

559 

Female 

departures - 

𝑋5 

-

.0000345 

.0000148 -

2.33 

0.

020 

Total 

Domestic 

Passengers - 

𝑋6 

1.82e-

06 

7.79e-06 0.2

3 

0.

815 

Total 

Domestic 

Movement - 

.00337

66 

.0006435 5.2

5 

0.

000 

𝑋7 
Total 

international 

Passengers - 

𝑋8 

-

.0000303 

6.35e-06     -

4.77    

0.

000 

Total 

international 

Movement - 

𝑋9 

.00532

15    

.0004385 12.

14    

0.

000 

Infant 

Passengers - 

𝑋10 

-

.000506 

.0000932 -

5.43 

0.

000 

Adult 

Passengers - 

𝑋11 

1.82e-

06    

3.06e-06  0.5

9 

0.

553 

Business 

Class 

Passengers - 

𝑋12 

.00043

78 

.0000677 6.4

7 

0.

000 

Econom

y Class 

Passengers - 

𝑋13 

4.20e-

06 

6.50e-06 0.6

5    

0.

518 

 

in table (7) demonstrates that the model fits the variables 

properly because the general significance is (0.000), which is 

within the 95% confidence interval. The highly high Chi-

Square value of (1485.58) for the Likelihood Ratio indicates 

that the model has properly explained the variables it contains. 

From the aforementioned, it can be inferred that the model 

was able to show a substantial link between the dependent and 

independent variables. usually, count data expressed that the 

variance greater than mean. Here also, we will check the value 

of variance and mean after fitting Count data of negative 

binomial regression 'model. the over-dispersion must be check 

by hypothesis as shown below: 

𝐻0: 𝑀𝑒𝑎𝑛 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒    𝐻1: 𝑀𝑒𝑎𝑛 < 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

 

Table 7: Omnibus Test of Model Effects for Negative 

Binomial Regression Model 

Likelihood Ratio Chi-Square DF Sig. 

1485.58 13 0.000 

 

Again, the Omnibus test from table (7) shows the 

significance of the model and is reported with Chi Square 

(𝜒2). Under the hypothesis that the current model is acceptable 

for the combinations of independent variables, all measures 

have roughly Chi-Square distributions. It reflects the 

likelihood ratio test result for a model's overall fit equal to 

(1485.58) and (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.000 < 0.05), it means 

significant. The significance of  𝜒2statistic implies the 

existence of over-dispersion. 

 

7. Model Selection  

 

In using Poisson regression model, equidispersion makes 

the assumption that the variance's mean value must be met. It 

appears that over dispersion is the case because this 

assumption is rarely true.  
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For detecting the over dispersion, it can be seen from the 

value of Null Deviance / DF=322 or Pearson 𝜒2/ DF=322. If 

the value of Null Deviance / DF, which equal to 

(2890.4281/322=8.9765) or Pearson 𝜒2/ DF, which equal to 

(2392.7301/322=7.4308) is greater than 1, when it is greater 

than 1, there is over dispersion; when it is less than 1, there is 

under dispersion. Negative binomial regression can be used as 

an additional method to handle over dispersion on the Poisson 

regression model in addition to the Generalized Poisson 

regression model.  

The ideal (best) model is the one with the lowest AIC and 

BIC values. To assesses the fit of the two models In Table (8), 

with a significance level of 15%, the likelihood of a negative 

binomial regression model is shown, along with the smallest 

AIC and BIC values for each combination of variables ranging 

from eight combinations of predictor variables. The Poisson 

regression model of the dataset had the largest values of all 

criterions and indicating a poor fit to the data. Using the 

Negative Binomial regression as alternative of Poisson 

regression model, it had the smaller values of that criterions 

when we compared with Poisson regression model and 

indicating better goodness of fit with the data and is 

considered as the best models. where the Deviance statistic is 

distributed approximated a Chi-square distribution. The null 

Deviance equal (2890.4281) as Chi square distributed with the 

model degree of freedom (1) but the Residual Deviance equale 

(8.9764) as Chi-square distributed with the model degrees of 

freedom (322), also it shows the AIC value of the model equal 

to (16.0790) and the value of BIC equal to (1017.318).  hence 

a model with 14 estimates parameters of Negative Binomial 

regression model with the smallest value of (AIC=11.6576) 

and (BIC=-1406.08) will be the optimal.  

 

Table 8: Goodness of Fit for both regression model 

Assessment parameter 

Generalized 

Poisson regression 

model 

Negative 

binomial model 

Pearson  𝜒2 statistic 2392.7301 299.9627 

Residual Pearson 

𝜒2statistic 

7.4308 0.9316 

Null Deviance 2890.4281 267.0299 

Null Deviance degree 

of freedom 

335 335 

Residual Deviance 8.9764 1.4504 

Residual degree of 

freedom  

322 322 

AIC 16.0790 11.6576 

BIC 1017.318 -1406.08 

 

 

8. Conclusions 

During analyzing the fitting of Generalized Poisson and 

Negative Binomial Regression models for output of count 

time series event as indicated from the practical part, the 

following conclusions have been drawn: 

1. We can consider that the direction of the number of EIA 

pax aircraft movement of most of the past years will increase 

in the middle of every year and continue to increase and then 

decrease at the end of every year except the (2017 and 2020) 

there is a difference. 

2. The behaviors of two different line (2020 and 2017) year, 

express that the air movement internationally demand for 

travelling did not show highly significant improvement as a 

new epicenter of (COVID-19) emerged in several countries, 

leading to a re-imposition of travel restrictions in (2020). In 

2017 the struggle against ISIS has had a significant impact on 

Kurds' daily lives, particularly on the KRG economy, which 

leaded to stopped travelling on Erbil airport during period of 

time. 

3. Covid 19 affected on the number of passengers 

demographically, there is a great convergence with the number 

of aircraft flights movement, especially the Middle East and 

Europe. While Africa did not have the problem of this disease 

(COVID 19).  

4. the Standard error value for the dependent variable is a 

sign that the dependent variable may be accurately predicted. 

The models' high chi-square values further demonstrated how 

well they explained the variables they contained. The 

Generalized Poisson and Negative Binomial Regression 

Model's Omnibus Test of Model effects revealed that the 

models fit the data very well for the chosen variables even 

though their p-values are less than (5%) and they are over 

dispersed. 

5. it shown that the same coefficients are significant for 

both models only the variable (Female departures-𝑋5) in the 

Generalized Poisson regression model is not significant, but 

enhanced statistically important variable in the Negative 

Binomial regression model by the value of the p-value of the 

Wald Chi Square test. 

6. the condition of (over dispersion) in the Generalized 

Poisson regression cannot gives adequate results.  Therefore, 

applied Negative Binomial regression to the same data. Find 

out that Negative Binomial is more capable than Generalized 

Poisson Regression model by using (Person 𝜒2, Deviance, 

AIC and BIC), it found to be that the Negative Binomial 

regression model had more performance and a superior model 

than Generalized Poisson regression model due to less than 

their values of that criterions.  
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