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Abstract—Silver is a precious metal and the spot price 

not only reflects the current supply and demand condition 

but it also reflects investors’ expectations of future 

inflation and other general business/economic conditions. 

Therefore, the main objective of this study is to forecasting 

yearly silver closing price and modifying the prediction by 

using wavelet transformation. This study aims to analyze 

the time series of yearly silver closing price for the period 

between (1969 to 2022) using time series analysis which is 

(Box-Jenkins) method for the accuracy and flexibility it 

has in addition modifying the prediction by using wavelet 

transformation. In this study. The study found that the fit 

and efficient model according to smallest measurements 

(RMSE, MAPE, MAE, and ME) is the ARIMA(2, 2, 1) 

model. According to the results of ARIMA(2, 2, 1), the 

amounts of yearly silver closing price have been modified 

by wavelet transformation which has smallest RMSE and 

ME when compared with the original ARIMA(2, 2, 1). 

 

Keywords—Time Series Analysis, ARIMA model, 

Forecasting, wavelet transformation 

 

 

 

 

 

 

1. Introduction 

Silver was used as an investment like other precious 

metals. It has been regarded as a form 

of money and store of value for more than 4,000 

years, although it lost its role as legal 

tender in developed countries when the use of 

the silver standard came to a final end in 1935. 

Some countries mint bullion and collector coins, 

however, such as the American Silver Eagle with 

nominal face values. In addition, the statistical tools 

could be analyzed these problems especially when 

time is a significant factor in them. Time series 

analysis is one of the powerful statistical tools that is 

used to forecasting yearly silver closing price which 

are causes of changing the economic situation. In 

this paper, we use autoregressive moving average 

(ARMA) time-series models and modifying model 

prediction using wavelet transformation. The AR 

and ARMA models are very well-known statistical 

methods for the analysis of stochastic processes in 

many diverse fields such as spectral estimation, time 

series forecasting and prediction, and biomedical 

engineering. The ARMA model is popular 

parametric approach, which uses the input and 

output signal to model the dynamics of 
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physiological systems. In addition, for short-term 

prediction and forecasting, autoregressive 

integrative moving average (ARIMA), one variant 

of the ARMA model, provides more accurate 

results. 

There are several studies that were used the ARIMA 

method, such as Biljana Petrevska and Goce Delcev (25 

Jul 2016) they used autoregressive integrated moving 

average model to forecast the number of international 

tourism demand focusing on the case of F.Y.R. 

Macedonia, for this purpose, the Box–Jenkins 

methodology have been applied and several alternative 

specifications were tested in the modeling of original 

time series and international tourist arrivals recorded in 

the period 1956–2013. Through the results of standard 

indicators for accuracy testing, the best model was 

ARIMA(1,1,1) for forecasting, then according to the 

forecasted values the researchers found out that the 

number of international tourism will increase by 13.9% 

in 2018. empirically developed a univariate 

autoregressive moving average model for Nigerian 

inflation and analyzed their forecasting performance for 

data between 1982- 2010. The study showed that 

ARIMA (2,2,3) tracked the actual inflation 

appropriately. The conclusion drawn was that Nigerian 

inflation is largely expectations-driven. In addition, it 

showed that ARIMA models can explain Nigeria 

inflation dynamics successfully and help to predict 

future prices. In a study to forecast Bangladesh‟s 

inflation,  applied a Box Jenkins ARIMA time series 

model. One year forecasting was done for consumer 

price index of Bangladesh using a structure for ARIMA 

forecasting model where a time series was expressed in 

terms of past values of itself plus current and lagged 

values of a „white noise‟ error term were drawn up. 

Validity of the model was tested using standard 

statistical techniques and the best model was proposed 

on the basis of various diagnostic and selection & 

evaluation criteria. The study found many disadvantages 

of ARIMA model as it neglected the inclusion of 

explanatory variables and conducted the forecasts only 

on past values of the dependent variable in combination 

with present and past moving average terms. So, 

incorporating the judgmental elements with the selected 

ARIMA model can enhance the predictability of model 

for forecasting consumer price index of Kenya and 

better assist the policymakers. To the best knowledge of 

the researchers, no current literature on using wavelet 

ARIMA model to forecast of silver closing price, and 

this concept is our contribution in the current study. So 

that the objective of the study is to forecasting yearly 

silver closing price and modifying the prediction by 

using wavelet transformation. 

So, the next section provides a brief overview of 

framework applying the Autoregressive Moving 

Average and wavelet transformation. In section 3, 

present the data and derive the time series models 

utilized in the analysis from the theoretical 

framework. The conclusions and further discussion 

of the study results are examined in section 4.  

 

2.  Materials and Methods 

2.1 Time series  
         A time series is a sequence of data variables, 

which is consisting of successive observations on a 

quantifiable variable(s), that is making an over a 

time interval Usually, the observations are 

chronological and taken at regular intervals (days, 

months, years). Time series data are also often seen 

naturally in many field areas including; (Economics, 

Finance, Environmental, and Medicine) Time series 

can be represented as a set of observations X_t, each 

one being recorded at a specific time t and written 

as: 

{           } or {  }, where T = 1, 2,...t 

and   is the value of X at time t, then the goal is to 

create a model of the form:  

                                

………………. (2.1) 

Where     is   variable for values of lag 1 that is 

the previous observations value, Xt-2 is the Xt 

variable for values of lag 2 means two observations 

value ago, etc., and it represents noise value which 

doesn‟t follow a pattern of forecasting. The Xt value 

is usually highly correlated with   -cycle if a time 

series is following a pattern repeating, where the 

cycle was an observations number in a regular cycle.  

 

2.2 Time series Analysis 

Time series data occurrences are becoming 

extremely valuable to the operations and 

development of modern organizations. Financial 

institutions. Likewise, public and private institutions 

are using time series data to manage and project the 

loads on the networks. More and more time series 

are used in this type of investigation and hundreds of 

thousands of time series that contain valuable 

economic and financial information are nowadays 

available both on and off-line. 

Time series analysis accounts for the fact that data 

points taken over time may have an internal 
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structure (such as autocorrelation, trend or seasonal 

variation) that should be accounted for. As defined 

earlier, time series analysis comprises methods for 

analyzing time series data in order to extract 

meaningful statistics and other characteristics of the 

data. It involves the use of techniques for drawing 

inferences from time series data. Note however that 

one other main purpose for analyzing time series is 

forecasting. Forecasting is the application of a model 

to predict future values based on previously 

observed time series values. 

 

2.3 Stationary and Non-stationary Series: 

     Stationary series vary around a constant mean level, 

neither decreasing nor increasing systematically over 

time, with constant variance. Non-stationary series have 

systematic trends, such as linear, quadratic, and so on. A 

non-stationary series that can be made stationary by 

differencing is called “non-stationary in the 

homogenous sense.” Stationarity is used as a tool in 

time series analysis, where the raw data are often 

transformed to become stationary. For example, 

economic data are often seasonal or dependent on a 

non-stationary price level. Using non-stationary time 

series produces unreliable and spurious results and leads 

to poor understanding and forecasting. The solution to 

the problem is to transform the time series data so that it 

becomes stationary. If the non-stationary process is a 

random walk with or without a drift, it is transformed to 

stationary process by differencing
. 

Differencing the 

scores is the easiest way to make a non-stationary mean 

stationary (flat). The number of times you have to 

difference the scores to make the process stationary 

determines the value of d. If d=0, the model is already 

stationary and has no trend. When the series is 

differenced once, d=1 and linear trend is removed. 

When the difference is then differenced, d=2 and both 

linear and quadratic trend are removed. For non-

stationary series, d values of 1 or 2 are usually adequate 

to make the mean stationary. If the time series data 

analysed exhibits a deterministic trend, the spurious 

results can be avoided by detrending. Sometimes the 

non-stationary series may combine a stochastic and 

deterministic trend at the same time and to avoid 

obtaining misleading results both differencing and 

detrending should be applied, as differencing will 

remove the trend in the variance and detrending will 

remove the deterministic trend. 

A stationary process has the property that the mean, 

variance and autocorrelation structure do not change 

over time. Stationarity can be defined in precise 

mathematical terms as: 

1. The mean (t)= E(γ(t))  

2. The variance 
2
 (t) = Var(y(t)) = γ(0)  

 

 

 

    There are two kinds of stationary: 

 

2.3.1 on-Stationary around Variance 

          In the case fluctuation of time series about 

the contrast and this discrepancy is not fixed, it 

means that the series is stationary about the contrast, 

and there are transfers to convert the string non 

stationary to a series of stationary, including the 

conversion logarithmic and transfers of power and 

the square root of the absence of stationary, about 

the contrast non-fixed and turn it into a series of 

fixed and stationary contrast by applying the 

following formula 
[16]

: 

   {
  
             
              

                ………………. (2.2) 

Where: Xt: the original series 

 

2.3.2 Non-Stationary around the Mean 

The basic conditional in being a stationary time 

series about mean and middle hard as the changes 

that occur in the qualities and characteristics of 

chains with time makes it unstable so you must 

remove the property not stability, of these chains are 

used difference method (Difference) to convert the 

string unstable to a series stable in terms of time 

difference and take her first and be in the following 

format 
[16]

: 

XXX ttt 1
 

                                      
………………. (2.3) 

XXXW tttt 1


                                   
………………. (2.4) 

Where: 

Δ: the difference factor 

Wt: the new series 

Xt: the original series 

 

 

2.4 Box-Jenkins Models: 

      This is a methodology that George-Box and 

Gwilyn Jenkins at 1970 applied to time series data. 

Box and Jenkins popularized an approach that 

combines the moving average and the autoregressive 

approaches. A Box-Jenkins model explains that the 

time series is stationary or not. Box and Jenkins is 

recommended that the non-stationary differencing 

one or more times series to obtain stationarity, with 
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the "I" standing for “Integrated" of an ARIMA 

model. A Box-Jenkins methodology is a powerful 

approach to the solution of many time series analysis 

problems. This methodology depends on parts of 

procedure which is [autoregressive (AR), moving 

average (MA) and autoregressive moving average 

(ARMA)] that can be explained as follow: 

 

2.4.1 Autoregressive (AR) model 

          The order of this type model depends on the    

of the significant partial autocorrelation function 

(PACF), its order is denoted by (P), the AR model 

can be written as follow: 

                                      

……………. (2.5) 

By using backshift operator equation (2.6) can be rewrite 

as follow: 

                                      …………………. 

(2.6) 

Where:   (  )                  –      
    

                        : is the origin series. 

                        : is white noise,    ~ N (0,  
 )  

                        : is the estimated PACF. 

To find Variance-Covariance the equation (2.6) 

should be multiplied by (Xt-k) and taking expectation 

so we get: 

           

             

                                       

..…(2.7) 

 

 

Note: 

                . 

              . 

Then: 

                                                 

…..…………(2.8) 

To get the ACF the equation (2.8) should be divided 

by the variance of the series (ϒ0). 

                                            

……………. (2.9) 

Note: 
  

  
  =  k,    ϒ0  =   

   

Then the PACF for the AR(P) model can be 

estimated by using Yule-Walker equations 

                                              

……………. (2.10) 

 

2.4.2 Moving Average (MA) Model: 

         The order of moving average model 

depends on the number of significant ACF and 

– ʘ 1 is the coefficient of dependency of 

observations (Xt) on the error term et and the 

previous error term at-1, the MA(q) model can 

be write as follow 
 

             

                    ……………. (2.11) 

 

Equation (2.11) can be rewrite with back shift 

operator as follow:  

                                   …………………. 

(2.12) 

Where: 

                   –     
  

The Var-Cov of MA(q) model is: 

 

   
                                           

     

ϒk =     …….(2.13) 

 

 

    ϒ0 =    
  ∑   

  
                      

…………………... (2.14) 

Note: 

              = 1. 

And the ACF is:  

 

Pk =    
                              

    
    

      
           

     
  

            ………... (2.15) 
 

 

2.4.3 Autoregressive Moving Average 

Model (ARMA) 

          There is large family of models which is 

named "Autoregressive-Moving Average Models" 

and abbreviated by ARMA. Many of researchers in 

different application fields prove that ARMA 

models fits more than other traditional methods for 

forecasting. The ARMA model is a more general 

model as a mixture of the AR(p) and MA(q) models 

and it is called an autoregressive moving average 



133 

Polytechnic Journal of Humanities and Social Sciences 

DOI: 10.25156/ptjhss.v3n1y2022.pp129-142 

 

model (ARMA) of order (p,q). The ARMA(p,q) is 

given by: 

                               …..………….. 

(2.16) 

Where: 

                    –     
  

                    –      
  

We write equation (2.16) as: 
 

   

                       

            –         …(2.17) 

 

2.4.4 The Autoregressive Integrated 

Moving Average Models (ARIMA) 

         When the time series data is not stationary, 

difference operator can be used to remove non-

stationary, the time series data after differencing is 

called adjusted data and the fitted model is called 

integrated model which is combine both autoregressive 

and moving average models.  

Notationally, all AR(p) and MA(q) models can be 

figured as ARIMA(1, 0, 0) this tells there is no 

differencing and no MA part. The general of ARIMA is 

written as ARIMA (p, d, q) where p is the order of the 

AR part, d is the degree of differencing and q is the 

order of the MA part 
, [16]

. 

     
              

 

 

The general ARIMA process is of the form 

   ∑      

 

   

 ∑      

 

   

  

                    

 

2.5 Autocorrelation Function (ACF) 

        The autocorrelation function measures 

the degree of correlation between neighboring 

observations in a time series. The 

autocorrelation coefficient is estimated from 

sample observation using the formula :  

  

 
∑                 
 
   

∑        
  

   

              

Thus, the autocorrelation function at lag k is 

defined as: 

 

   
  
  
                       

 

2.6 Partial Autocorrelation Function (PACF) 

          The partial autocorrelation function at lag 

k is the correlation between Xt and Xt-k after 

removing the effect of the intervening variables 

Xt-1, Xt-2, ….., Xt-k+1 which locate within (t, t-k) 

period, partial autocorrelation function will be 

donated by , PACF is calculated by 

iteration 
, [21]

. 

       

       

    
    ∑           

   
   

  ∑         
   
   

   

                             

 

Therefore                                

           

 

 

 
 

 

 

 

2.7 Model Selection Criteria 

2.7.1 Akaike Information Criterion AIC 

         Akaike Information Criterion AIC 
 
is 

defined as 

                  

      ………………. (2.21) 

where L is the maximized likelihood function 

and p is the number of effective parameters. 

The best model is the one with the smallest 

AIC. The likelihood function part reflects the 

goodness of fit of the model to the data, while 

2p is described as a penalty. Since L generally 

increases with p, AIC reaches the minimum at a 

certain p. AIC is based on the information 

theory.  
 

2.7.2 Mean Absolute Percentage Error 

(MAPE) 

        The MAPE also is said to be mean 

absolute percentage deviation (MAPD) that is 

an accurate measure of a method for 

constructing time series fitted model, the 

accuracy in time series processes is expressed 

by: 
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∑|

    ̂ 
  

|

 

   

                          

    Where Xt is the actual value and  ̂  is the 

forecast value. 

 
 

2.7.3 Mean Absolute Error (MAE) 

         The MAE is mathematically expressed by: 

    
 

 
∑|  |

 

   

                              

Where it is the error term and n is the number of 

forecasting .  

 

2.7.4 Root Mean Square Error (RMSE) 

         The RMSE is expressed by: 

    

 √
 

 
∑(    ̂ )

 
 

   

                       

Where:    = actual value 

              ̂ = forecasteed value 

             N = number of forecasted time period 
[16]

. 

 

2.8 Estimating the Parameters of an 

ARMA Model 

       Iterative method can be used to 

estimate the parameters of the 

ARMA model. At every point sum square 

residual should be calculated of suitable grid of the 

parameter values, and the sufficient values are given 

minimum sum of squared residuals. For an ARMA 

(1,1) the model is given by 

                            

………………. (2.25) 

    Given N observation           , we guess 

values for  ,   ,   , set      and      and then 

calculate the residuals recursively by 

        

                     

                        

 

The residual sum of squares ∑   
  

    is calculated. 

Then other values of  ,   ,   , are tried until the 

minimum residual sum of squares is found. 

Note: It has been found that most of the stationary 

time series occurring in practices can be fitted by 

AR(1), AR(2), MA(1), MA(2), ARMA(1,1) or white 

noise models that are customarily needed in practice. 

 

2.9 Models Forecasts 

       The main goal of constructing a model for a 

time series is to make future forecasteions for a 

given series. It also plays a significant role in 

assessing the forecasts accuracy. The ultimate test of 

an ARIMA model is power or ability to forecast. In 

order to obtain a forecast with a minimal errors, 

there are seven features of a good ARIMA models 

taken into account. First, a good model is 

parsimonious. That is, it has the smallest number of 

coefficients which explain the data set. Secondly, a 

sufficient AR model should not be nonstationary. 

Thirdly, the MA of the model should be invertible. 

Fourth, insufficient model the residuals must be 

independent. Fifth, the distribution of residuals of a 

good model must be distributed normal
 
. From the 

existing theory of the series up to time t, namely, 

                  , we can forecast the value of 

    , that will happen h time units ahead. In this 

case, time t is the forecast origin and the lead time 

forecast. This forecast is denoted and estimated as 

 ̂           |            ………………. 

(2.26) 

Once an adequate and satisfactory model is fitted to 

the series of interest, forecasts can be generated 

using the model. 

                              

      …………. (2.27) 

The one-step-ahead forecast for time t 1 is given 

by: 

                                

        …. (2.28) 

 

2.10 Haar Wavelet 

2.10.1   Haar Wavelet 

The simplest type of wavelet is the Haar wavelet. In 

its discrete form, these wavelets are linked with a 

mathematical process that is known as the Haar 

transform. This process plays the role of a prototype 

that facilitates other wavelet transforms. If we want 

to get a good understanding of the sophisticated 

wavelet transforms, we need to gather more 

information about the Haar transform. In short, this 

wavelet transform can be considered as the most 

suitable choice regarding localized jumps and edge 

detection
 [24]

. The numeric definition for the Haar 

scaling function is as follows: 
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      {
          
            

 

 

 

 

 

Whereas, the definition for the Haar mother wavelet 

is as follows: 

  

                      ............ (2.29) 

                                           

   

{
 
 

 
                     

 

 

              
 

 
    

                           

 

 

2.10.2   Haar Wavelet’s properties  

 Any function can be used as the constant 

function‟s linear combination, 

                             and 

their shifting functions. 

 Another property is that any function can 

be used as the linear combination of 

                             and 

associated shifting functions. 

 Another property is that only Haar Wavelet 

can be compactly supported orthogonal and 

has symmetry  

 Last property is that it makes use of a set of 

functions    
 

                 on 

orthonormal basis
 [24]

. 

2.10.3   Level Haar Transform  

1st level Haar Transform for                        

is given by: 

           
  
→    |  )            

     ............ (2.30) 

                   
     

√ 
 
     

√ 
   

       

√ 
                   

............ (2.31) 

                   
     

√ 
 
     

√ 
   

       

√ 
                   

............ (2.32) 

The list continues so for other levels
 [24]

. 

 

2.10.4   Advantages of the Haar Wavelet 

Transform  

It is to be mentioned that the Haar Wavelet 

Transform offers multiple advantages. Some of the 

main advantages of the Haar Wavelet Transform 

include: 

 conceptually simple,  

 fastest possible wavelet,  

 fast processing speed,  

 reversibility, without the edge effects that 

are a problem with other Wavelet 

transforms,  

 increased memory efficiency, since it can 

be calculated in place without a temporary 

Array
 [24]

 

 

2.10.5   The Haar Transform Limitations  
As for the limitations of the Haar Transform, which 

can be a problem with for some applications? In 

generating each of averages for the next level and 

each set of coefficients, the Haar transform performs 

an average and difference on a pair of values. Not 

only this, when generating the averages to be used at 

the next level as well as for each set of coefficients, 

this transform performs with regard to the pair of 

values in which the algorithm makes a shift over by 

two consecutive values for calculating the difference 

level. Moreover, the Haar transform window is only 

wide by two elements so if in case a big change 

occurs from an even to an odd value, we cannot see 

the change on the high frequency coefficients. 

Therefore, it can be said that for audio signal 

compressing and for noise removal, the Haar 

wavelet transform cannot be a viable choice
 [24]

.  

 

3. Data Analysis and Results 

3.1 Data Description  
 

        The dataset used for the analysis in this study 

is contained one variable and deals with yearly silver 

closing price since January 1969 up to 2022 as 

shown in figure 4.1.  

 
TABLE 3.1 

DATA DESCRIPTIONS 

 Mean  10.17907 

 Median  6.330000 

 Maximum  35.12000 

 Minimum  1.540000 

 Std. Dev.  7.912488 

 Skewness  1.233229 

 Kurtosis  3.865170 

 Jarque-Bera  15.37184 

 Probability  0.000459 

 Sum  549.6700 

 Sum Sq. Dev.  3318.196 

 Observations  54 
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3.2 Applications 

   The time series plots are display observations on 

the y-axis against equally spaced time intervals on 

the x-axis. They are used to evaluate patterns, 

knowledge of the general trend and behaviors in data 

over time. The time series plot of m yearly silver 

closing price is displayed in Figure 3.1 below:  

 
Figure 3.1: yearly plot of time series of closing silver price 

 
        Figure 3.1 indicates that the data of time series 

is not random. The plot shows consistent pattern of 

short-term changes for data which indicates the 

existence of trend fluctuations. This series varies 

randomly over time and there are trend fluctuations. 

For further testing of the stationery of the time 

series, we applied Box-Pierce Test for yearly closing 

silver price, and demonstrates this result by the 

examination of the autocorrelation and partial 

autocorrelation functions as shown below. 

 
Figure 3.2: Autocorrelation Function for yearly closing silver 

price 

 
Figure 3.3: Partial Autocorrelation Function for yearly closing 

silver price 

All the above results and plots support that the data 

of time series is not random at the level.  
TABLE 3.2 

BOX-PIERCE TEST FOR LEVEL OF SERIES 

Randomness Test Value P-value 

Box-Pierce Test 125.018 0.000 

      
Since the P-value for the test in table (3.2) is less 

than 0.05, we can reject the hypothesis that the 

series is random at the 95.0% confidence level.  

Since the three tests are sensitive to different types 

of departures from random behavior, failure to pass 

any test suggests that the time series may not be 

completely random. And it needs some treatments to 

be transformed to a random series. Therefore, we 

used many transformations and we found that the 

most suitable transformation is by differencing the 

series. We note that the time series for the first-

differenced series in Figure 3.4. 

 
Figure 3.4: Time series plot of the first difference of yearly 

closing silver price 

 

         Figure 3.4 indicates that the data of time series 

at first difference which is not random. The plot 

shows consistent pattern of short-term changes for 

data, and this demonstrates by estimating the 

autocorrelation and partial autocorrelation function 

(ACF and PACF) for the first-differenced series in 

Figure 3.5 and 3.6 

 
Figure 3.5: Autocorrelation Function for the first-differenced 

series of yearly 
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closing silver price 
Figure 3.6: Partial Autocorrelation Function for the first-

differenced series of yearly closing silver price 

 

       The results above demonstrate the first 

differencing of the time series data of yearly closing 

silver price. Thus, the series became is not 

stationarity. 

TABLE 3.3 

 BOX-PIERCE TEST FOR FIRST DIFFERENCING OF SERIES 

Randomness Test Value P-value 

Box-Pierce Test 8.4604 0.000 

 

The Box-Pierce Test in table (3.3) is based on the 

sum of squares of the first 24 autocorrelation 

coefficients.  Since the P-value for this test is greater 

than or equal to 0.05, we cannot reject the 

hypothesis that the series is random at the 95.0% or 

higher confidence level.  Since the three tests are 

sensitive to different types of departures from 

random behavior, failure to pass any test suggests 

that the time series may not be completely random. 

And it needs second differencing of the series in 

Figure 3.7. 

 

 
Figure 3.7: Time series plot of the second difference of yearly 

closing silver price 

 

         Figure 3.7 indicates that the data of time series 

at second difference which is random. The plot 

shows consistent pattern of short-term changes for 

data, and this demonstrates by estimating the 

autocorrelation and partial autocorrelation function 

(ACF and PACF) for the first-differenced series in 

Figure 3.8 and 3.9 

 

 
Figure 3.8: Autocorrelation Function for the second-differenced 

series of yearly closing silver price 

 

Figure 3.9: Partial Autocorrelation Function for the second-

differenced series of yearly closing silver price 

 

The results above demonstrate the first differencing 

of the time series data of yearly closing silver price. 

Thus, the series became is not stationarity. 

 
TABLE 3.4 

 BOX-PIERCE TEST FOR SECOND DIFFERENCING OF SERIES 

Randomness Test Value P-value 

Box-Pierce Test 13.8657 0.6765 

 

The Box-Pierce Test in table (3.4) is based on the 

sum of squares of the first 24 autocorrelation 

coefficients.  Since the P-value for this test is greater 

than or equal to 0.05, we cannot reject the 

hypothesis that the series is random at the 95.0% or 

higher confidence level.   

 

3.4 Model Identification 

       This section shows how we determine the 

order of the ARIMA model. We computed all 

relevant criteria to determine good ARIMA model 

of yearly closing silver price. Those are the ACF and 

PACF in addition to RMSE, MAE, MAPE, and ME 

criteria. To take a decision must be scanning all the 

plots of ACF and PACF coefficients of the series as 

shown in the figure (3.8 and 3.9) respectively. yearly 

silver closing price data is yearly and according to 

the identification criteria, the following models have 

been examined and estimated as shown in table (3.5) 

below. The best model is chosen through the RMSE, 
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MAE, MAPE and ME criteria if it shows the lowest 

values of these criteria as it is shown in table (3.5). 
 

  
TABLE 3.5 

ARIMA MODELS CRITERIA FOR YEARLY CLOSING SILVER PRICE 

Model RMSE MAE MAPE ME 

 ARIMA(1,2,1) 3.57631 2.16301 26.7392 -0.34888 

 ARIMA(1,2,2) 3.59263 2.18821 20.8126 0.158399 

 ARIMA(2,1,0) 3.53923 2.13005 21.5809 -0.46186 

 ARIMA(2,2,0) 3.58987 2.0965 20.2744 0.187463 

 ARIMA(2,2,1) 3.5354 2.0727 20.6897 0.085184 
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        The initial order of the ARIMA model have 

been determined from the figure (3.8 and 3.9) for 

MA and AR respectively, from figure 3.8 we have 

only one significant ACF, while from figure 3.9 we 

have two significant PACF, thus the model is 

ARIMA (2, 2, 1), and it is shown in table (3.5) that 

the ARIMA (2, 2, 1) model produced the value of 

each RMSE, MAE, and ME criteria with the 

smallest values. This means that the ARIMA (2, 2, 

1) model is the best among all the other models, 

which is the most suitable model that can be 

obtained for yearly closing silver price. 
 

3.5 Parameters Estimation 

       Since we concluded in the previous section 

that the ARIMA (2,2,1) model is the best model 

with the smallest value of RMSE, MAE, MAPE and 

ME criteria, the parameters had been estimated 

using the method of maximum likelihood estimation 

as it is the best and most appropriate method of 

estimation. The results of the parameters estimation 

of the model are shown in table (3.6) below. 
 

 

 

 

 

 

 

 

 

 

It is shown in table (3.6) that the p-value for the 

parameters AR(2), and MA(1) coefficients are 

less than 0.05. This indicates that these 

coefficients are significantly different from 

zero, however the p-value of AR(1) parameter 

is greater than 0.05, means that this 

coefficient is not significantly different from 

zero. As it is shown for this model, the RMSE, 

MAPE, MAE and AIC criteria are the smallest 

values among the other models. Thus, the final 

model is ARIMA (2,2,1). 

 
 

 

 

 

 

 

3.7 Applying a wavelet Transformation 

In this section applying a wavelet residual 

modification to improve prediction precision by 

ARIMA(2, 2, 1) model the first step is make a 

residual which are obtained from the model as 

shown in the table (3.7) 

 

 

The second step is final prediction value as 

shown in table (3.7). 

 

  TABLE 3.7 

 RESIDUAL OBTAINED FROM ARIMA(2, 2, 1) 

Period Residual Period Residual Period Residual 

1  19 0.175433 37 -0.869712 

2  20 -2.41981 38 1.49418 

3 -3.48998 21 0.355792 39 1.80695 

4 -2.09139 22 -0.250384 40 3.55612 

5 -0.256499 23 1.0067 41 -2.91471 

6 0.841174 24 0.572026 42 4.70361 

7 0.522762 25 0.938143 43 9.42665 

8 -0.252398 26 -0.124333 44 -10.1994 

9 4.5276 27 0.983946 45 0.0735264 

10 4.52249 28 0.20678 46 -2.48509 

11 8.63589 29 0.641661 47 -1.61851 

12 5.43132 30 -0.544375 48 0.166785 

13 -11.8333 31 0.264027 49 0.399999 

14 -0.409394 32 0.257843 50 -1.87934 

15 -2.48313 33 1.01753 51 -0.22087 

16 -2.54604 34 0.957304 52 -0.517847 

17 -0.61599 35 1.55795 53 0.0833951 

18 -3.65297 36 0.945617 54 0.0318247 

 

TABLE 3.6 

 PARAMETER ESTIMATES OF ARIMA (2,2,1) MODEL ESTIMATE MODEL 

COEFFICIENTS 

Parameter Estimate Stnd. Error t P-value 

AR(1) 0.185715 0.1365 1.36056 0.180009 

AR(2) -0.324387 0.136853 -2.37034 0.021837 

MA(1) 1.03162 0.0469788 21.9593 0.000000 
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Table (3.8) shows the real value and forecasting 

precision obtained from wavelet, then one can test 

the accuracy of the models according to mean error 

(ME) and root mean square error (RMSE) which 

shown in the table (3.9) 

 

 

 

 

 
 

 

Table 3.9 shows the comparison between 

ARIMA(2,2,1) and wavelet ARIMA(2,2,1) which is 

depends on ME and RMSE, it is clear that the 

ARIMA(2,2,1) after transforming to the wavelet is 

the best accurate than the model before using 

wavelet transformation. 

 

5. Conclusion  

    Silver is a precious metal and the spot price not 

only reflects the current supply and demand 

condition but it also reflects investors‟ expectations 

of future inflation. Therefore, the study aims to 

analyze the time series of yearly silver closing price 

for the period between (1969 to 2022) using time 

series analysis which is (Box-Jenkins) method for 

the accuracy and flexibility it has in addition 

modifying the prediction by using wavelet 

transformation. The results of the study shown that 

the wavelet ARIMA(2,2,1) model has a great effect 

on the accuracy of the model, the root mean square 

error is only 2.6395 of the modification model, and 

forecasting accuracy is greatly improved and better 

than the model before modification, and the 

statistical tests show that the time series of yearly 

silver closing price is stable, WHILE the best and 

most efficient model is ARIMA (2,2,1) among the 

possible models which was chosen using the 

balancing standards (the smallest value of each: 

AIC, RMSE, MAPE and MAE criteria). The main 

result of the study is the parameters estimate of 

ARIMA (2,2,1) Model which are significant thus, 

the ARIMA (2,2,1) is efficient. Finally, the future 

study can be use wavelet GARCH model to improve 

and determine volatility in silver closing price. 

 

TABLE 3.8 

SHOWS ACTUAL VALUES, ARIMA (2, 2, 1) VALUES, WAVELET 

FORECAST WITH WAVELET RESIDUAL 

Period Data Forecast 
Wavelet 

Forecast 

Wavelet 

Residual 

1 23.3       

2 25.1       

3 20.7 24.1800 23.3494 -2.6594 

4 16.2 18.3114 17.8136 -1.5936 

5 15.7 15.9665 15.9055 -0.1955 

6 17.1 16.2288 16.4290 0.6410 

7 17.2 16.6472 16.7716 0.3984 

8 15.7 15.9124 15.8523 -0.1923 

9 19.1 14.5424 15.6200 3.4500 

10 23.8 19.2675 20.3439 3.4461 

11 31.2 22.5141 24.5694 6.5806 

12 35.1 29.6887 30.9814 4.1386 

13 20.2 32.0233 29.2070 -9.0170 

14 14.7 15.0794 14.9820 -0.3120 

15 15 17.4731 16.8821 -1.8921 

16 13.4 15.9260 15.3200 -1.9400 

17 11.6 12.1660 12.0194 -0.4694 

18 7.31 10.9630 10.0936 -2.7836 

19 6.66 6.4846 6.5263 0.1337 

20 4.88 7.2998 6.7239 -1.8439 

21 4.6 4.2442 4.3289 0.2711 

22 4.37 4.6204 4.5608 -0.1908 

23 4.95 3.9433 4.1829 0.7671 

24 5.22 4.6480 4.7841 0.4359 

25 5.54 4.6019 4.8251 0.7149 

26 4.9 5.0243 4.9947 -0.0947 

27 5.2 4.2161 4.4502 0.7498 

28 5.2 4.9932 5.0424 0.1576 

29 5.29 4.6483 4.8011 0.4889 

30 4.31 4.8544 4.7248 -0.4148 

31 3.95 3.6860 3.7488 0.2012 

32 4.06 3.8022 3.8635 0.1965 

33 4.83 3.8125 4.0546 0.7754 

34 5.5 4.5427 4.7705 0.7295 

35 6.53 4.9721 5.3428 1.1872 

36 7.02 6.0744 6.2994 0.7206 

37 5.47 6.3397 6.1327 -0.6627 

38 6.13 4.6358 4.9914 1.1386 

39 8.15 6.3431 6.7731 1.3769 

40 11.4 7.8639 8.7102 2.7098 

41 7.92 10.8347 10.1410 -2.2210 

42 10.5 5.7864 6.9058 3.5842 

43 21 11.5534 13.7969 7.1831 

44 11.1 21.2694 18.8419 -7.7719 

45 5.42 5.3465 5.3640 0.0560 

46 4.64 7.1251 6.5336 -1.8936 

47 4.35 5.9685 5.5833 -1.2333 

48 4.43 4.2632 4.3029 0.1271 

49 4.67 4.2700 4.3652 0.3048 

50 2.55 4.4293 3.9821 -1.4321 

51 1.68 1.9009 1.8483 -0.1683 

52 1.54 2.0579 1.9346 -0.3946 

53 1.77 1.6866 1.7064 0.0636 

54 1.8 1.7682 1.7758 0.0242 

 

TABLE 3.9 

MODEL ACCURACY 

Measurements ARIMA(2,2,1) Wavelet ARIMA(2,2,1) 

RMSE   3.463972 2.639544239 

ME 0.085184 0.064910685 
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