Synthesis of Zinc Sulfide Nanoparticles by Chemical Coprecipitation Method and its Bactericidal Activity Application

Authors

  • Razhan S. Othman Department of medical laboratory technique ,Shaqlawa technical institute ,Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq https://orcid.org/0000-0001-8280-6590
  • Rebaz A. Omar Department of Chemistry, Faculty of Science and Health, Koya University, Koya, Kurdistan Region, Iraq https://orcid.org/0000-0001-7468-516X
  • Karzan A. Omar Department of Chemistry, Faculty of Science and Health, Koya University, Koya, Kurdistan Region, Iraq https://orcid.org/0000-0002-6694-6144
  • Aqeel I. Gheni Department of of Medical Microbiology, Faculty of Science and Health, Koya University, Koya, Kurdistan Region, Iraq https://orcid.org/0000-0001-7172-4434
  • Rekar Q. Ahmad Department of Chemistry, Soran University, Soran, Kurdistan Region, Iraq
  • Sheyma M. Salih Department of Chemistry, Soran University, Soran, Kurdistan Region, Iraq
  • Avan N. Hassan Department of Chemistry, Soran University, Soran, Kurdistan Region, Iraq

DOI:

https://doi.org/10.25156/ptj.v9n2y2019.pp156-160

Keywords:

Band gap, Coprecipitation method, Nanoparticle, Staphylococcus aureus, Zinc sulfide

Abstract

A particle of zinc sulfide (ZnS) was synthesized by the chemical coprecipitation method using zinc sulfate heptahydrate (ZnSO4), ammonium sulfate (NH4)2SO4 as a reactant, and thiourea as a stabilizer and capping agent. The optioned product characterized by electron dispersive X-ray spectroscopy that exhibits the presence of Zn and S elements. The average particle size of the ZnS nanoparticles determined using X-ray diffraction is about 4.9 nm. The ultraviolet–visible spectroscopy showed the blue shift in wavelength and the band gap was 4.33 eV, the surface morphology of the synthesized ZnS nanoparticles powder was studied by scan electron microscopy which was showed the irregular and some spherical shapes of ZnS in a nanosized range. The Fourier-transform infrared spectroscopy observed an absorption peck at 657.73 and 613.36 cm?1 that were assigned to the stretching mods of the Zn-S band. The different amounts of ZnS nanoparticle were applied as bactericidal against Staphylococcus aureus by disk diffusion method. It displayed activity against S. aureus bacteria, which was carried out in the absence of irradiation.

Downloads

Download data is not yet available.

References

Bai, H., Z. Liu and D. D. Sun. 2011. Hierarchical ZnO/Cu “corn-like” materials with high photodegradation and antibacterial capability under visible light. J. Phys. Chem. Chem. Phys. 13: 6205-6210.

Behboudnia, M., M. H. Majlesara and B. Khanbabaee. 2005. Preparation of ZnS nanorods by ultrasonic waves. J. Mater. Sci. Eng. 122(2): 160-163.

Bowersox, J. 1999. Experimental Staph Vaccine Broadly Protective in Animal Studies, NIH, Archived the Original on 5 May 2007. https://www.en.wikipedia.org/wiki/Staphylococcus_aureus#cite_note-NIH-10. [Last accessed on 2007 Jul 28].

Chandran, A., N. Francis, T. Jose and K. C. George. 2010. Synthesis, structural characterization and optical bandgap determination of ZnS nanoparticles. Acad. Rev. 17(1-2): 17-21.

Dunnill, C. W., Z. A. Aiken, A. Kafizas, J. Pratten, M. Wilson, D. J. Morgan and I. P. Parkin. 2009. White light induced photocatalytic activity of sulfur-doped TiO2 thin films and their potential for antibacterial application. J. Mater. Chem. 19: 8747-8754.

Harris, L.G., J. Foster and R. G. Richard. 2002. An introduction to Staphylococcus aureus, and technique for identifying and quantifying S. aureus adhesions in relation to adhesion to biomaterials. J. Eur. Cells Mater.

: 39-60.

Harvey, D. 2000. Modern Analytical Chemistry. 1st ed. McGraw-Hill, Dubuque, IA.

Jamieson, T., R. Bakhshi, D. Petrova, R. Pocock, M. Imani and A. M. Seifalian. 2007. Biological applications of quantum dots. J. Biomater. 28(31): 4717-4732.

Jayalakshmi, M. and M. M. Rao. 2006. Synthesis of zinc sulphide nanoparticles by thiourea hydrolysis and their characterization for electrochemical capacitor applications. J. Power Sources. 157: 624-629.

Jung, W. K., H. C. Koo, K. W. Kim, S. Shin, S. Kim and Y. H. Park. 2008. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol. 74: 2171-2178.

Kluytmans, J., A. Van Belkum and H. Verbrugh. 1997. Nasal carriage of Staphylococcus aureus: Epidemiology, underlying mechanisms, and associated risks. J. Clin. Microbiol. Rev. 10: 505-520.

Maciej, Z., S. M. Paul, F. Tyan and S. H. Geraldine. 1992. Quantitative separation of bacteria in saline solution using lanthanide Er(II1) and a magnetic field. J. Gen. Microbiol. 138: 63-68.

Masalha, M., I. Borovok, R. Schreiber, Y. Aharonowitz and G. Cohen. 2001. Analysis of transcription of the Staphylococcus aureus aerobic class Ib and anaerobic class III ribonucleotide reductase genes in response to oxygen. J. Bacteriol. 183: 7260-7272.

Nicole, J., R. Binata, T. R. Koodali and C. M. Adhar. 2008. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 279(1): 71-76.

Omar, K., B. I. Meena and S. A. Muhammed. 2016a. Study on the activity of ZnO-SnO2 nanocomposite against bacteria and fungi. J. Physicochem. Probl. Miner. Proc. 52: 754-766.

Omar, R. A., A. I. Gheni and K. A. Omar. 2016c. Antibacterial activity of Zn/Nylon nanocomposite against Escherichia coli and Staphylococcus aureus. Indian J. Nat. Sci. 6(36): 976-997.

Omar, R. A., A. K. Smail and K. A. Omar. 2016b. Study on the activity of Ag/Nylon 6, 10 nanocomposite against Escherichia coli. Int. J. Curr. Microbiol. Appl. Sci. 5: 935-941.

Perelshtein, I., E. Ruderman, N. Perkas, T. Tzanov, J. Beddow, E. Joyce, T. J. Mason, M. Blanes, K. Mollá and A. Patlolla. 2013. Chitosan and chitosan ZnO-based complex nanoparticles: Formation, characterization, and antibacterial activity. J. Mater.

Ryan, K. J. and C. G. Ray. 2004. Sherris Medical Microbiology. 4th ed. McGraw Hill, New York.

Schlecht, L. M., B. M. Peters, B. P. Krom, J. A. Freiberg, G. M. Hänsch, S. G. Filler, M. A. Jabra-Rizk and M. E. Shirtliff. 2015. Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue. J. Microbiol. 161: 168-181.

Tang, W. and D. C. Cameron. 1996. Electroluminescent zinc sulphide devices produced by sol-gel processing. Thin Solid Films. 280: 221-226.

Thomas, J. S., K. Daniel. and W. Suzanne. 2010. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2(5): a000414.

Tong, S. Y., J. S. Davis, E. Eichenberger, T. L. Holland and V. G. Fowler. 2015. “Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. J. Clin. Microbiol. Rev. 28: 603-661.

Wang, C. F., B. Hu, H. H. Yi and W. B. Li. 2011. Structure and photoluminescence properties of ZnS films grown on porous Si substrates. J. Opt. Laser Technol. 43(8): 1453-1457. Chem. B. 1: 1968-1976.

Published

2019-12-01

How to Cite

Othman, R. S., Omar, R. A., Omar, K. A., Gheni, A. I., Ahmad, R. Q., Salih, S. M., & Hassan, A. N. (2019). Synthesis of Zinc Sulfide Nanoparticles by Chemical Coprecipitation Method and its Bactericidal Activity Application. Polytechnic Journal, 9(2), 156-160. https://doi.org/10.25156/ptj.v9n2y2019.pp156-160

Issue

Section

Research Articles