Evaluating the effect of addition of Titanium dioxide nanoparticle on some Mehanical properties of flowable composite resin

Authors

  • Sazgar S. Qasim AL-Hawezi Hawler Medical University/ College of Dentistry https://orcid.org/0000-0002-2486-9400
  • Diyar K. Bakr hawler medical university/ college of dentistry
  • Dara H. Rasheed Hawler medical university/ college of dentistry

DOI:

https://doi.org/10.25156/ptj.v12i2.262

Keywords:

Flowable Composites, Titanium Dioxide nanoparticles, Vickers microhardness, Flexural strength, Fracture toughness

Abstract

Background and objective: The aim of the present study was to evaluate certain mechanical properties of flowable dental composite after incorporation of Titanium dioxide nanoparticles (TiO2NPs).

Materials and Methods: In the present study, TiO2NPs at 1.25 % and 2.5% concentrations were added to flowable dental composite, while the unmodified composite was used as control. Then the mechanical properties of the control and modified composite resins, including Vickers microhardness, Flexural strength and Fracture toughness were tested. Data were analyzed with One way ANOVA, using SPSS version 20.0

Results: The results showed that there was statistically significant difference among the tested groups regarding Vickers microhardness, Flexural strength and Fracture toughness (P<0.05). In addition, there was a significant difference among control group and TiO2NPs modified groups regarding Flexural strength in which 2.5% group showed a significant reduction in flexural strength in comparision with 1.25% and control groups.

Conclusion: Based on the results of the present study, a flowable dental composite was successfully reinforced with TiO2NPs. Incorporation of small weight percentages of this nanofiller exhibited properties better than control material.

Downloads

Download data is not yet available.

References

1. Payne, J.H,1999. The marginal seal of Class II restorations: Flowable composite resin compared to injectable glass ionomer. J Clin Pediatr Dent. 23(2):123-30.
2. Elsaka, S.E, Hamouda I.M, Swain, M.V,2011. Titanium dioxide addition to a conventional glass-ionomer restorative: Influence on physical and antibacterial properties. J Dent 39(9):589-98
3. Wetzel, B, Rosso, P, Haupert, F, Friedrich, K. 2006. Epoxy nanocomposites–fracture and toughening mechanisms. Engineering Fracture Mechanics 73(16): 2375-2398.
4. Vandewalle, K.S, Roberts, H.W, Rueggeberg, F.A 2008. Power distribution across the face of different light guides and its effect on composite surface microhardness. J Esthet Restor Dent 20(2):108-117
5. Y. Li, Y, Lin, H, Zheng, G, Zhang, X, Xu, Y, 2015. A comparison study on the flexural strength and compressive strength of four resinmodified luting glass ionomer cements. Biomedical Materials Engineering 26(1): 59-517.
6. Wang, L, D’Alpino, P.H.P, Lopes,L.G, Pereira, J.C, 2003. Mechanical properties of dental restorative materials: Relative contribution of laboratory tests. J ApplOral Sci 11(3): 162-7
7. Petterson, R.W, Bodig, J, 1983. Prediction of fracture toughness of conifers. Wood Fib. Sci., 15(4): 302-316
8. Soderholm K.J, 2009. Review of the fracture toughness approach. Dental Materials. 26(2):63-77.
9. Belli, R, Kreppel, S, Petschelt, A, Horenberger, H, Boccaccini , A.R, Lohbauer, U, 2014. Strengthening of dental adhesives via particle reinforcement. J. Mech. Behav. Biomed. Mater, 37:100–108
10. Omar, M.F, Akil, H.M, hmad, Z.A, 2013. Particle size: Dependent on the static and dynamic compression properties of polypropylene/ silica composites. Mater. Des, 45:539–547.
11. Fu, S.U, Feng, X.Q, Lauke, B, Mai, Y.W, 2008. Effects of particle sizes, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composities. Composities, Part B : 933-961
12. Tanimoto, Y, Kitagawa, T, Aida, M, Nishiyama, N, 2006, Experimental and computational approach for evaluating the mechanical characteristics of dental composite resins with various filler sizes. Acta Biomater, 2(6):633–639.
13. Ornaghi, B.P, Meier, M.M, Lohbauer, U, Braga, R.R, 2014, Fracture toughness and cyclic fatigue resistance of resin composites with different filler size distributions. Dent. Mater, 30(7):742–751.
14. Al Jafary, M, Hashim, M.I, AlKhadhari, M.A, Alshammery, S.A, Assery, M.K, 2019. Effect of Nanoparticles on Physico-Mechanical Properties of Flowable Dental Composite Resins; Sci Adv Mat, 11(7): 986-993.
15. American National Standards/American Dental Association specification no. 27 for resin-based filling materials. (1993) Chicago: American Dental Association,Council on Scientific Affairs.
16. Ruse, N.D, Troczynski, T, MacEntee, M.I, Feduik, D, 1996. Novel fracture toughness test using a notchless triangular prism (NTP) specimen. J Biomed Mater Res, 31(4):457- 63.
17. Tian, M, Gao Y, Liu, Y, Liao, Y, Xu, R.N, Hedin, E, Fong, H, 2007. Bis-GMA/TEGDMA dental composites reinforced with electrospun nylon 6 nanocomposite nanofibers containing highly aligned fibrillar silicate single crystals. Polymer 48(9): 2720-2728.
18. Xia, Y, Zhang F, Xie H, Gu, N, 2008. Nanoparticle-reinforced resin baseddental composites. J Dent, 36(6):450-5.
19. Wetzel, B, Rosso, P, Haupert, F, Friedrich, K, 2006. Epoxy nanocomposites–fracture and toughening mechanisms. Engineering Fracture Mechanics 73(16):2375-2398.
20. Wu, M, Zhang, F, Yu, J, Zhou, H, Zhang, D, Hu, C, Huang, J, 2014. Fabrication and evaluation of light-curing nanocomposite resins filled with surface-modified TiO2 nanoparticles for dental application. Iran. Polym. J, 23(7): 513–524.
21. Khurshid, Z, Zafar, M, Qasim, S, Shahab, S, Naseem, M, AbuReqaiba, A, 2015. Advances in nanotechnology for restorative dentistry. Mater, 8(2), 717–731.
22. Yang, Q, Lin, Y, Li, M, Sh, Y, Nan, C, 2015. Characterization of mesoporous silica nanoparticle composites at low filler content. J. Compos. Mater, 50(6) :715–722.
23. Liu, Y, Sun, Y, Zeng, F,Xie, W, 2014. Effect of nano SiO2 particles on the morphology and mechanical properties of POSS nanocomposite dental resins. J. Nanopart. Res. 16:1-8.
24. Xia, Y, Zhang, F, Xie, H, Gu, N, 2008. Nanoparticle-reinforced resin-based dental composites. J. Dent., 36(6):450–455.
25. Chung, S.M, Yap, A.U, Chandra, S.P, Lim, C.T, 2004. Flexural strength of dental composite restoratives: Comparison of biaxial and three-point bending test. J Biomed Mat Res;71(2):278-83.
26. Lu, H, Lee, Y.K, Oguri, M, Powers, J.M, 2006. Properties of a dental resin composite with a spherical inorganic filler. Oper Dent. 31(6):734-40.
27. Harini, P, Mohamed, K, Padmanabhan, T, 2014. Effect of titanium dioxide nanoparticles on the flexural strength of polymethylmethacrylate: An in vitro study. Ind J Dent Res 25(4):459-463.
28. Garcia-Contreras, R, Scougall-Vilchis, R, Contreras-Bulnes, J.R, Sakagami, H, Morales-Luckie, R.A, Nakajima, H, 2015. Mechanical, antibacterial and bond strength properties of nano-titanium-enriched glass ionomer cement. J Appl Oral Sci. 23(3):321-8.
29. Andreotti, A.M, Goiato, M.C, Moreno, A, Nobrega, A.S, Pesqueira, A.A, dos Santos, D.M, 2014. Influence of nanoparticles on color stability, microhardness, and flexural strength of acrylic resins specific for ocular prosthesis. Int J Nanomedicine. 9(1): 5779–5787.
30. Li, Y, Lin, H, Zheng, G, Zhang, X, Xu, Y, 2015. A comparison study on the flexural strength and compressive strength of four resin modified luting glass ionomer cements. Biomed Mater Eng. 26(1): 9-17.
31. Wang, L.P, D’Alpino, H.P, Lopes, L.G, Pereira, J.C, 2003. Mechanical properties of dental restorative materials: Relative contribution of laboratory tests. J Appl Oral Sci 11(3):162-7.
32. Feiz, A, Samanian, N, Davoudi, A, Badrian, H, 2016. Effect of different bleaching regimens on the flexural strength of hybrid composite resin. J. Conserv. Dent. 19(2):157–160.
33. Pala, K, Tekçe, N, Tuncer, S, Demirci, M, Öznurhan, F, Serim, M, 2017. Flexural strength and microhardness of anterior composites after accelerated aging. J. Clin. Exp. Dent. 9(3), e424–e430.
34.Stencel, R, Kasperski, J, Pakieta, W, Mertas, A, Bobela, E, Rybarek, I.B, Chladek, G, 2018. Properties of Experimental Dental Composites Containing Antibacterial Silver-Releasing Filler. Materials (Basel), 11(11):2173
35. Khaled, S.M.Z, Miron, R.J, Hamilton, D.W, Charpentier, P.A, Rizkalla, A.S, 2010. Reinforcement of resin based cement with titania nanotubes. Dental Materials. 26(2):169-78.
36. Friedrich, K, Fakirov, S, Zhang, Z, 2005. Polymer composites: From nano- to macro-scale. London: Springer Science and Business Media.
37. Asar, N.V, Albayrak, H, Korkmaz, T, Turkyilmaz,, I, 2013. Influence of various metal oxides on mechanical and physical properties of heat-cured polymethyl methacrylate denture base resins. J. Adv. Prosthodont. 5(3): 241–247.
38. Protopapa, P, Kontonasaki, E, Bikiaris, D, Paraskevopoulos, K.M, Koidis, P, 2011. Reinforcement of a PMMA resin for fixed interim prostheses with nanodiamonds. Dent. Mater. J, 30(2):222–231.
39. Gdoutos, E.E, 2005. Fracture mechanics criteria and applications.2nd ed New York: Springer.
40. Karthick, R, Sirisha, P, Sankar, M.R, 2014. Mechanical and tribological properties of PMMA-sea shell based biocomposite for dental application. Proced. Mater Sci, 6:1989–2000.
41. Chen, M,H, 2010. Update on dental nanocomposites. J. Dent. Res., 89(6):549–560.

Downloads

Published

2023-04-16

How to Cite

Qasim AL-Hawezi, S. S., Bakr, D. K., & Rasheed, D. H. (2023). Evaluating the effect of addition of Titanium dioxide nanoparticle on some Mehanical properties of flowable composite resin. Polytechnic Journal, 12(2), 229-238. https://doi.org/10.25156/ptj.v12i2.262

Issue

Section

Research Articles