Study of Microwave Technique in Hot Pepper Seed by Different Solvents with an Assessing Antioxidant and Antibacterial Properties

Authors

DOI:

https://doi.org/10.25156/ptj.v11n1y2021.pp80-86

Keywords:

Chili pepper seed oil, Microwave-assisted-extraction, Antioxidant, Antibacterial activity, Chili pepper

Abstract

Chili pepper seed (CPS) is rich in nutrients and phytochemical particularly oil which could possess antimicrobial and antioxidant properties. Using novel techniques such as microwave assisted extraction (MAE) with solvents could be useful to extract these materials. The objectives of this study are to develop and evaluate antioxidants (and antibacterial activities of the hot seed pepper oil extracts using both water and ethanol solvents with MAE as novel techniques in relation to its ability to extract antioxidant and antibacterial compounds. Chili pepper seed (CPS) was obtained from the Kahramanmaraş, Turkey. CPS was extracted with water and ethanol and assessed for anti-oxidants activity via assessing total tannin, total phenol, total flavonoid and total anthocyanin and antimicrobial properties via assessing inhibition zone and minimum inhibitory concentration. Both yield extraction and total anthocyanin values extracted with water were 38.4 and 40.075% respectively and are higher significantly (p<0.01) higher than ethanolic extraction. On the other hand,   total tannin, total phenol and total flavonoid values were 0.0575, 1.80700 and 0.26350 μM respectively which were significantly (p<0.01) higher with ethanol extraction. Ethanol had the greater free radical scavenging activity (IC 50 µg/ml) and more close standard butylated hydroxytoluene. Antimicrobial results indicated that water extracts was more effective against Staphylococcus aureus Pseudomonas aeruginosa, Enterococcus faecalis, Enterobacter aerogenes up to 24mm inhibition zone but, it is dose dependent. CPS oil extracts could be used as source of antimicrobial and antioxidants compounds with the aid of MAE. Ethanol has better yield and anthocyanin extraction and Free radical, whereas water extraction has effective antimicrobial activity.

Downloads

Download data is not yet available.

References

Arslan, D. and M. M. Özcan. 2011. Dehydration of red bell-pepper (Capsicum annuum L.): Change in drying behavior, colour and antioxidant content. Food Bioprod. Proc. 89(4): 504-513.

Arvouet-Grand, A., B. Vennat, A. Pourrat and P. Legret. 1994. Standardization of propolis extract and identification of principal constituents. J. Pharm. Belgiq. 49(6): 462-468.

Balaky, H. H. and A. İnanç. 2014. Thermal stability of chlorophyll pigments in virgin olive oil. Kahramanmaras J. Nat. Sci. 17(2): 34-40.

Balaky, H. H., Y. Galali, A. A. Osman, E. Karaoğul., E. Altuntas, M. T. Uğuz, A. M. K. Galalaey and M. H. Alma. 2020. Evaluation of antioxidant and antimicrobial activities of mandarin Peel (Citrus reticulata blanco) with microwave assisted extract using two different solvents. Asian J. Plant Sci. 19(3): 223-229.

Chen, L., J. E. Hwang, K. M. Gu, J. H. Kim, B. Choi, K. S. Song, Y. Park and Y. H. Kang. 2012. Comparative study of antioxidant effects of five Korean varieties red pepper (Capsicum annuum L) extracts from various parts including placenta, stalk, and pericarp. Food Sci. Biotechnol. 21(3): 715-721.

Cruz, A. B., R. Cé Bella Cruz, B. Cruz, M. Kanegusuku, V. C. Filho, R. A. Yunes, F. Delle Monache and R. Niero. 2006. Antimicrobial activity of Rubus imperialis (Rosaceae). Acta Farm. Bonaerense. 25(2): 256-259.

Dewanto, V., W. Xianzhong, K. K. Adom and R. H. Liu. 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 50(10): 3010-3014.

Di Cagno, R., R. F. Surico, G. Minervini, M. De Angelis, C. G. Rizzello and M. Gobbetti. 2009. Use of autochthonous starters to ferment red and yellow peppers (Capsicum annum L.) to be stored at room temperature. Int. J. Food Microbiol. 130(2): 108-116.

Di Scala, K. and G. Crapiste. 2008. Drying kinetics and quality changes during drying of red pepper. LWT Food Sci. Technol. 41(5): 789-795.

Galali, Y., K. I. Aziz and S. Ali. 2017. The antimicrobial activity of peel and seeds extracts of red grapes. J. Tikrit Univ. Agric. Sci. 17(3): 36-40.

Galali, Y., Z. A. Omar and S. M. Sajadi. 2020. Biologically active components in by-products of food processing. Food Sci. Nutr. 8(7): 1-19.

Gálvez, M., C. Martín-Cordero, P. J. Houghton and M. J. Ayuso. 2005. Antioxidant activity of Plantago bellardii all. Phytother. Res. 19(12): 1074-1076.

Gu, L. B., H. L. Pang, K. K. Lu, H. M. Liu, X. D. Wang and G. Y. Qin. 2017. Process optimization and characterization of fragrant oil from red pepper (Capsicum annuum L.) seed extracted by subcritical butane extraction. J. Sci. Food Agric. 97(6): 1894- 1903.

Gülçin, İ., Z. Huyut, M. Elmastaş and H. Y. Aboul-Enein. 2010. Radical scavenging and antioxidant activity of tannic acid. Arab. J. Chem. 3(1): 43-53.

Hamad, H. O., M. H. Alma, İ. Gulcin, M. A. Yilmaz and E. Karaoğul. 2017. Evaluation of phenolic contents and bioactivity of root and nutgall extracts from Iraqian Quercus infectoria olivier. Rec. Nat. Prod. 11(2): 205-210.

Holem, H. B., H. N. Rasul, A. K. Haval, S. Romel and B. Q. Ismael. 2020. Effect of heating on changes of chlorophyll content and oxidative stability in olive pomace oil. J. Crit. Rev. 7(19): 8282- 8287.

Holem, H. B., K. M. Khalid, A. H. Hasan, S. M. Tahir, S. Ubur and K. Galalaey. 2021. Agriculture, environment and food sciences. Int. J. Agric. Environ. Food Sci. 1(5): 1-6.

Jarret, R. L., I. J. Levy, T. L. Potter and S. C. Cermak. 2013. Seed oil and fatty acid composition in Capsicum spp. J. Food Comp. Anal. 30(2): 102-108.

Jinyan, W., W. Yuqi, Z. Lan and N. I. Shifeng. 2014. Kinetic study on extraction of red pepper seed oil with supercritical CO2. Chin. J. Chem. Eng. 22(1): 44-50.

Jurkštienė, V., A. Pavilonis, D. Garšvienė, A. Juozulynas, L. Samsonienė, D. Daukšienė, K. Jankauskienė, G. Šimonienė- Kazlauskienė and E. Stankevičius. 2011. Investigation of the antimicrobial activity of rhaponticum (Rhaponticum carthamoides D.C. Iljin) and shrubby cinquefoil (Potentilla fruticosa L.). Medicina. 47(3): 24.

Kaya, O., F. Z. Akçam and G. Yayli. 2012. Investigation of the in vitro activities of various antibiotics against Brucella melitensis strains. Turk. J. Med. Sci. 42(1): 145-148.

Korkutata, N. F. and A. Kavaz. 2015. A comparative study of ascorbic acid and capsaicinoid contents in red hot peppers (Capsicum annum L.) grown in Southeastern anatolia region. Int. J. Food Propert. 18(4): 725-734.

Kothari, V., A. Gupta and M. Naraniwal. 2012. Comparative study of various methods for extraction of antioxidant and antibacterial compounds from plant seeds. J. Nat. Remedies, 12(2), 162-173.

Li, Y., S. Li, S. J. Lin, J. J. Zhang, C. N. Zhao and H. B. Li. 2017. Microwave-assisted extraction of natural antioxidants from the exotic gordonia axillaris fruit: Optimization and identification of phenolic compounds. Molecules. 22(9): 1481.

Makkar, H. P. S. and B. Singh. 1995. Determination of condensed tannins in complexes with fibre and proteins. J. Sci. Food Agric. 69(1): 129-132.

Medini, F., H. Fellah, R. Ksouri. and C. Abdelly. 2014. Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant Limonium delicatulum. J. Taibah Univ. Sci. 8(3): 216-224.

Murugan, R. and T. Parimelazhagan. 2014. Comparative evaluation of different extraction methods for antioxidant and antiinflammatory properties from Osbeckia parvifolia Arn.-an in vitro approach. J. King Saud Univ. Sci. 26(4): 267-275.

Omolo, M. A., Z. Z. Wong, A. K. Mergen, J. C. Hastings, N. C. Le, H. A. Reiland, K. A. Case and D. J. Baumler. 2014. Antimicrobial properties of chili peppers. J. Infect. Dis. Ther. 2(4): 2-8.

Özyildiz, F., S. Karagönlü, G. Basal, A. Uzel and O. Bayraktar. 2012. Micro-encapsulation of ozonated red pepper seed oil with antimicrobial activity and application to nonwoven fabric. Lett. Appl. Microbiol. 56(3): 168-179.

Rapisarda, P., A. Tomaino, R. Lo Cascio, F. Bonina, A. De Pasquale and A. Saija. 1999. Antioxidant effectiveness as influenced by phenolic content of fresh orange juices. J. Agric. Food Chem. 47(11): 4718-4723.

Vega-Gálvez, A., K. Di Scala, K. Rodríguez, R. Lemus-Mondaca, M. Miranda, J. López and M. Perez-Won. 2009. Effect of airdrying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chem. 117(4): 647-653.

Wang, J., Y. Wang, L. Zheng, S. Ni, Z. Fan, R. Yao and K. Chen. 2014. Kinetic study on extraction of red pepper seed oil with supercritical CO2. Chin. J. Chem. Eng. 22(1): 44-50.

Xie, X., D. Zhu, W. Zhang, W. Huai, K. Wang, X. Huang, L. Zhou and H. Fan. 2017. Microwave-assisted aqueous two-phase extraction coupled with high performance liquid chromatography for simultaneous extraction and determination of four flavonoids in Crotalaria sessiliflora L. Ind. Crops Prod. 95: 632-642.

Yilmaz, E., E. Sevgi Arsunar, B. Aydeniz and O. Güneşer. 2015. Cold pressed capia pepperseed (Capsicum annuum L.) oils: Composition, aroma, and sensory properties. Eur. J. Lipid Sci. Technol. 117(7): 1016-1026.

Yilmaz, M. T. 2012. Minimum inhibitory and minimum bactericidal concentrations of boron compounds against several bacterial strains. Turk. J. Med. Sci. 42(2): 1423-1429.

Zou, Y., K. Ma and M. Tian. 2015. Chemical composition and nutritive value of hot pepper seed (Capsicum annuum) grown in Northeast region of China. Food Sci. Technol. 35(4): 659-663.

Published

2021-06-30

How to Cite

Balaky, H. H., Galali, Y., Karaoğul, E., Altuntaş, E., Rasol, N. H., & Mustafa, A. A. (2021). Study of Microwave Technique in Hot Pepper Seed by Different Solvents with an Assessing Antioxidant and Antibacterial Properties. Polytechnic Journal, 11(1), 80-86. https://doi.org/10.25156/ptj.v11n1y2021.pp80-86

Issue

Section

Research Articles