Biocontrol Activities of Olive Endophytic Bacteria Isolates Against Pseudomonas savastanoi

Authors

DOI:

https://doi.org/10.25156/ptj.v12n2y2022.pp114-120

Keywords:

Olive knot, Bacillus sp., Pseudomonas fluorescens, in vitro screening, Secondary Metabolite

Abstract

Background and objectives: Olive knot disease caused by the phytopathogenic bacterium Pseudomonas savastanoi affects olive cultivation in both quality and quantity. Endophytic bacteria are candidates for biocontrol agents according to previous research.

Methods: In this study we collected samples (leaves and galls) randomly for pathogen and endophytic bacteria isolation from the different olive growing areas around Erbil including (Qucha Blbas, Grdasor, Sami Abdulrahman Park, and College of Agricultural Engineering Sciences) on June - October 2021.

Results: Forty-six isolates of endophytic bacteria were obtained and tested against P. savastanoi. The result indicated that five isolates showed growth inhibition of the pathogen among them two of the most effective isolates selected (Oq5 and Og2) with the pathogenic isolate molecularly identified using amplified 16S rDNA. The pathogenic isolate identified as P. savastanoi (Accession No. OP001734), isolate Oq5 P. fluorescens (Accession No. OP001733), and Og2 as Bacillus sp. (Accession No. OP001732). Also, their secondary metabolites extracted at different times of incubation and tested using the agar well diffusion method showed great inhibition of the pathogen. Both isolates showed the highest inhibition zone (25-26mm) after 10 days of incubation.

Conclusions: Our results suggest that both endophytic bacteria isolate effective biocontrol of olive knot disease.

Downloads

Download data is not yet available.

References

Alabouvette, C., C. Olivain and C. Steinberg. 2006. Biological control of plant diseases: the European situation. Eur. J. Plant Pathol, 114(3): 329-341.

Ali, N., Chapuis, E., Tavoillot, J., and Mateille, T. 2014. Plant-parasitic nematodes associated with olive tree (Olea europaea L.) with a focus on the Mediterranean Basin: A review. Comptes Rendus Biol. 337(7-8), 423-442.

Amin, A., M. A. Khan, M. Ehsanullah, U. Haroon, S. M. F. Azam and A. Hameed. 2012. Production of peptide antibiotics by Bacillus sp: GU 057 indigenously isolated from saline soil. Braz. J. Microbiol. 43: 1340-1346.

Anjum, N. and R. Chandra. 2015. Endophytic bacteria: optimizaton of isolation procedure from various medicinal plants and their preliminary characterization. Asian J. Pharm. Clin. Res, 8(4): 233-238.

Awla, H. K., J. Kadir, R. Othman, T. S. Rashid, S. Hamid and M.-Y. Wong. 2017. Plant growth-promoting abilities and biocontrol efficacy of Streptomyces sp. UPMRS4 against Pyricularia oryzae. Biol. Control. 112: 55-63.

Baldoni, L. & A. Belaj. 2009. Olive. In Oil crops, 397-421: Springer.

Balouiri, M., M. Sadiki and S. K. Ibnsouda. 2016. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal, 6(2): 71-79.

Basim, H., E. Basim and A. Ersoy. 2019. Phenotypic and genotypic characterization of Pseudomonas savastanoi pv. savastanoi causing olive knot disease in Turkey. Appl. Ecol. Environ, 17(6): 14927-14944.

Dimkić, I., S. Stanković, M. Nišavić, M. Petković, P. Ristivojević, D. Fira and T. Berić. 2017. The profile and antimicrobial activity of Bacillus lipopeptide extracts of five potential biocontrol strains. Front. Microbiol. 8: 925.

Eid, A. M., S. S. Salim, S. E.-D. Hassan, M. A. Ismail and A. Fouda. 2019. Role of endophytes in plant health and abiotic stress management. Microbiome in Plant Health and Disease. 119-144: Springer.

Elsayed, T. R., S. Jacquiod, E. H. Nour, S. J. Sørensen and K. Smalla. 2020. Biocontrol of bacterial wilt disease through complex interaction between tomato plant, antagonists, the indigenous rhizosphere microbiota, and Ralstonia solanacearum. Front. Microbiol. 10: 2835.

Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39(4): 783-791.

Gardan, L., C. Bollet, M. A. Ghorrah, F. Grimont and P. Grimont. 1992. DNA Relatedness among the Pathovar Strains of Pseudomonas syringae subsp. savastanoi Janse 1982 and Proposal of Pseudomonas savastanoi sp. nov. Int. J. Syst. Evol. Microbiol, 42(4): 606-612.

Gray, E. and D. Smith. 2005. Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol. Biochem. 37(3): 395-412.

Hall, B., E. Cother, M. Whattam, D. Noble, J. Luck and D. Cartwright. 2004. First report of olive knot caused by Pseudomonas savastanoi pv. savastanoi on olives (Olea europaea) in Australia. Australas. Plant Pathol. 33(3): 433-436.

Hall, T., I. Biosciences and C. Carlsbad. 2011. BioEdit: an important software for molecular biology. GERF Bull Biosci. 2(1): 60-61.

Iacobellis, N., A. Sisto, G. Surico, A. Evidente and E. DiMaio. 1994. Pathogenicity of Pseudomonas syringae subsp. savastanoi mutants defective in phytohormone production. J Phytopathol. 140(3): 238-248.

Imathiu, S. M., R. V. Ray, M. Back, M. C. Hare and S. G. Edwards. 2009. Fusarium langsethiae pathogenicity and aggressiveness towards oats and wheat in wounded and unwounded in vitro detached leaf assays. Eur. J. Plant Pathol 124(1): 117-126.

Johnsen, K. and P. Nielsen. 1999. Diversity of Pseudomonas strains isolated with King's B and Gould's S1 agar determined by repetitive extragenic palindromic-polymerase chain reaction, 16S rDNA sequencing and Fourier transform infrared spectroscopy characterisation. FEMS microbiol. Let. 173(1): 155-162.

Kannan, R., T. Damodaran and S. Umamaheswari. 2015. Sodicity tolerant polyembryonic mango root stock plants: a putative role of endophytic bacteria. Afr. J. Biotechnol. 14(4): 350-359.

Khavazi, K., A. Asgharzadeh, M. Hosseini-Mazinani and R. De Mot. 2008. Biocontrol of Pseudomonas savastanoi, causative agent of olive knot disease: antagonistic potential of non-pathogenic rhizosphere isolates of fluorescent Pseudomonas. Commun. Agric. Appl. Biol. Sci. 73(1): 199-203.

Khlaif, H. 2006. Olive knot disease in Jordan. Jordan Journal of Agricultural Sciences.

Kumar, S., G. Stecher and K. Tamura. 2021. MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution https://doi.org/10.1093/molbev/msab120.

Kumar, S., Stecher, G. & Tamura, K. 2012. Bioactive stilbenes from a Bacillus sp. N strain associated with a novel rhabditid entomopathogenic nematode. Lett. Appl. Microbiol. 33(7): 1870-1874.

Liarzi, O., P. Bucki, S. Braun Miyara and D. Ezra. 2016. Bioactive volatiles from an endophytic Daldinia cf. concentrica isolate affect the viability of the plant parasitic nematode Meloidogyne javanica. PloS one, 11(12): e0168437.

Marchi, G., C. Viti, L. Giovannetti and G. Surico. 2005. Spread of levan-positive populations of Pseudomonas savastanoi pv. savastanoi, the causal agent of olive knot, in central Italy. Eur. J. Plant Pathol. 112(2): 101-112.

Mohamad, O. A., L. Li, J.-B. Ma, S. Hatab, L. Xu, J.-W. Guo, B. A. Rasulov, Y.-H. Liu, B. P. Hedlund and W.-J. Li. 2018. Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus against Verticillium dahliae. Front. Microbiol. 9: 924.

Mondal, K., R. Singh, P. Dureja and J. Verma. 2000. Secondary metabolites of cotton rhizobacteria in the suppression o bacterial blight of cotton. Indian Phytopathol. 53(1): 22-27.

Mora, I., J. Cabrefiga and E. Montesinos. 2015. Cyclic lipopeptide biosynthetic genes and products, and inhibitory activity of plant-associated Bacillus against phytopathogenic bacteria. PLoS One, 10(5): e0127738.

Moreno-Pérez, A., A. Pintado, J. Murillo, E. Caballo-Ponce, S. Tegli, C. Moretti, P. Rodríguez-Palenzuela and C. Ramos. 2020. Host range determinants of Pseudomonas savastanoi pathovars of woody hosts revealed by comparative genomics and cross-pathogenicity tests. Front. Plant Sci. 11: 973.

Mouloud, G., H. Daoud, J. Bassem, I. Laribi Atef and B. Hani. 2013. New bacteriocin from Bacillus clausii strainGM17 purification, characterization, and biological activity. Appl. Biochem. Biotechnol. 171(8): 2186-2200.

Nei, M. and S. Kumar. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York.

Panagopoulos, C.1993. Olive knot disease in Greece 1. EPPO Bulletin 23(3): 417-422.

Pérez-García, A., D. Romero and A. De Vicente. 2011. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr. Opin. Biotechnol. 22(2): 187-193.

Pérez-Martínez, I., L. Rodriguez-Moreno, I. M. Matas and C. Ramos. 2007. Strain selection and improvement of gene transfer for genetic manipulation of Pseudomonas savastanoi isolated from olive knots. Res. Microbiol. 158(1): 60-69.

Pyrowolakis, E. and H. C. Weltzien. 1974. Studies on the distribution of Olive knot, induced by Pseudomonas savastanoi (Sm.) Stev. in the Greek island of Crete/Studi sulla distribuzione della rogna dell'Olivo da Pseudomonas savastanoi (Sm.) Stev. nell'isola greca di Creta. Phytopathol. Mediterr. 118-120.

Quesada, J. M., R. Penyalver and M. M. López. 2012. Epidemiology and control of plant diseases caused by phytopathogenic bacteria: the case of olive knot disease caused by Pseudomonas savastanoi pv. savastanoi. Plant Pathology, 299-326.

Rashid, T. S. 2021. Bioactive metabolites from tomato endophytic fungi with antibacterial activity against tomato bacterial spot disease. Rhizosphere, 17: 100292.

Sesma, A. and A. E. Osbourn. 2004. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature, 431(7008): 582-586.

Sneath, P., H. A, and R. Sokal. 1973. Numerical Taxonomy. Freeman, San Francisco.

Stockwell, V., K. Johnson, D. Sugar and J. Loper. 2010. Control of fire blight by Pseudomonas fluorescens A506 and Pantoea vagans C9-1 applied as single strains and mixed inocula. Phytopathol. 100(12): 1330-1339.

Valverde, P., M. Zucchini, S. Polverigiani, E. Lodolini, F. J. López-Escudero and D. Neri 2020. Olive knot damages in ten olive cultivars after late-winter frost in central Italy. Sci. Hortic. 266: 109274.

Young, J. 2004 . Olive knot and its pathogens. Australas. Plant Path. 33(1): 33-39.

Zhang, C., S. Lu, C. Wei and J. Zhao. 1991. Bacterium strain 1-1-4 Pseudomonas fluorescens for biocontrol of peach crown gall disease. Acta Agric. Shanghai. 7: 65-69.

Downloads

Published

2023-04-16

How to Cite

Ali , A. O., & Rashid, T. S. (2023). Biocontrol Activities of Olive Endophytic Bacteria Isolates Against Pseudomonas savastanoi. Polytechnic Journal, 12(2), 114-120. https://doi.org/10.25156/ptj.v12n2y2022.pp114-120

Issue

Section

Research Articles